
Imbo
Release 2.2.3

May 23, 2018

Contents

1 Installation guide 3
1.1 Requirements . 3
1.2 Installation . 3
1.3 Upgrading Imbo . 10
1.4 Configuration . 14
1.5 Customize your Imbo installation with event listeners . 36
1.6 Command line tool . 49

2 End user guide 51
2.1 Imbo’s API . 51
2.2 Transforming images on the fly . 74

3 Extending/customizing Imbo 85
3.1 Working with events and event listeners . 85
3.2 Implement your own database and/or storage adapter . 91
3.3 Implement your own image transformations . 91
3.4 Cache adapters . 92
3.5 Contributing to Imbo . 94

i

ii

Imbo, Release 2.2.3

Imbo is an image “server” that can be used to add/get/delete images using a RESTful HTTP API. There is also support
for adding meta data to the images stored in Imbo. The main idea behind Imbo is to have a place to store high quality
original images and to use the API to fetch variations of the images. Imbo will resize, rotate and crop (amongst other
transformations) images on the fly so you won’t have to store all the different variations.

Imbo is an open source (MIT licensed) project written in PHP and is available on GitHub. If you find any issues or
missing features please add an issue in the issue tracker. If you want to know more feel free to join the #imbo channel
on the Freenode IRC network (chat.freenode.net) as well.

Contents 1

http://opensource.org/licenses/MIT
http://php.net
https://github.com/imbo/imbo
https://github.com/imbo/imbo/issues
http://freenode.net

Imbo, Release 2.2.3

2 Contents

CHAPTER 1

Installation guide

1.1 Requirements

Imbo requires a web server (for instance Apache, Nginx or Lighttpd) running PHP >= 5.6 and the Imagick extension
for PHP.

You will also need a backend for storing image information, like for instance MongoDB or MySQL. If you want to
use MongoDB as a database and/or GridFS for storage, you will need to install the Mongo PECL extension, and if you
want to use a RDBMS (Relational Database Management System) like MySQL, you will need to install the Doctrine
Database Abstraction Layer.

1.2 Installation

To install Imbo on the server you can choose between two different methods, Composer (recommended) or git clone.

1.2.1 Using composer

The recommended way of installing Imbo is by creating a composer.json file for your installation, and then install
Imbo and optional 3rd party plug-ins via Composer. You will need the following directory structure for this method
to work:

/path/to/install/composer.json
/path/to/install/config/

where the composer.json file can contain:

{
"name": "yourname/imbo",
"require": {
"imbo/imbo": "dev-master"

(continues on next page)

3

http://httpd.apache.org/
http://nginx.org/en/
http://www.lighttpd.net/
http://php.net
http://pecl.php.net/package/imagick
http://www.mongodb.org/
http://www.mysql.com
http://docs.mongodb.org/manual/core/gridfs/
http://pecl.php.net/package/mongo
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/dbal.html
https://getcomposer.org

Imbo, Release 2.2.3

(continued from previous page)

}
}

and the config/ directory contains one or more configuration files that will be merged with the default configuration.
Imbo will load all .php files in this directory, and the ones returning an array will be used as configuration.

If you want to install 3rd party plug-ins and/or for instance the Doctrine DBAL library simply add these to the
require object in your composer.json:

{
"name": "yourname/imbo",
"require": {
"imbo/imbo": "dev-master",
"rexxars/imbo-hipsta": "dev-master",
"doctrine/dbal": "2.*"

}
}

If some of the 3rd party plug-ins provide configuration files, you can link to these in the config/ directory to have
Imbo automatically load them:

cd /path/to/install/config
ln -s ../vendor/rexxars/imbo-hipsta/config/config.php 01-imbo-hipsta.php

To be able to control the order that Imbo will use when loading the configuration files you should prefix them with
a number, like 01 in the example above. Lower numbers will be loaded first, meaning that configuration files with
higher numbers will override settings set in configuration files with a lower number.

When you have created the composer.json file you can install Imbo with Composer:

curl -s https://getcomposer.org/installer | php
php composer.phar install -o --no-dev

After composer has finished installing Imbo and optional dependencies the Imbo installation will reside in /path/
to/install/vendor/imbo/imbo. The correct web server document root in this case would be /path/to/
install/vendor/imbo/imbo/public.

If you later want to update Imbo you can bump the version number you have specified in composer.json and run:

php composer.phar update -o --no-dev

Regarding the Imbo version you are about to install you can use dev-master for the latest released version, or you
can use a specific version if you want to (recommended). Head over to Packagist to see the available versions. If
you’re more of a YOLO type of person you can use dev-develop for the latest development version. If you choose
to use the dev-develop branch, expect things to break from time to time.

Imbo strives to keep full BC in minor and patch releases, but breaking changes can occur. The most secure way to
install one or more Imbo servers is to specify a specific version (for instance 1.2.0) in your composer.json file.
Read the ChangeLog and the Upgrading Imbo chapter before doing an upgrade.

1.2.2 Using git clone

You can also install Imbo directly via git, and then use Composer to install the dependencies:

4 Chapter 1. Installation guide

https://packagist.org/packages/imbo/imbo
https://github.com/imbo/imbo/blob/develop/ChangeLog.markdown

Imbo, Release 2.2.3

mkdir /path/to/install; cd /path/to/install
git clone https://github.com/imbo/imbo.git
cd imbo
curl -s https://getcomposer.org/installer | php
php composer.phar install -o --no-dev

In this case the correct web server document root would be /path/to/install/imbo/public. Remember to
checkout the correct branch after cloning the repository to get the version you want, for instance git checkout
master. If you use this method of installation you will have to modify Imbo’s composer.json to install 3rd party
libraries. You will also have to place your own config.php configuration file in the same directory as the default
Imbo configuration file, which in the above example would be the /path/to/install/imbo/config directory.

If you want to contribute to Imbo, this is the obvious installation method. Read more about this in the Contributing to
Imbo chapter.

1.2.3 Web server configuration

After installing Imbo by using one of the methods mentioned above you will have to configure the web server you
want to use. Imbo ships with sample configuration files for Apache and Nginx that can be used with a few minor
adjustments. Both configuration files assume the httpd runs on port 80. If you use Varnish or some other HTTP
accelerator simply change the port number to the port that your httpd listens to.

Apache

You will need to enable mod_rewrite if you want to use Imbo with Apache. Below is an example on how to configure
Apache for Imbo:

<VirtualHost *:80>
Servername of the virtual host
ServerName imbo

Define aliases to use multiple hosts
ServerAlias imbo1 imbo2 imbo3

Document root where the index.php file is located
DocumentRoot /path/to/install/vendor/imbo/imbo/public

Logging
CustomLog /var/log/apache2/imbo.access_log combined
ErrorLog /var/log/apache2/imbo.error_log

Rewrite rules that rewrite all requests to the index.php script
<Directory /path/to/install/vendor/imbo/imbo/public>

RewriteEngine on
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule .* index.php

</Directory>
</VirtualHost>

You will need to update ServerName to match the host name you will use for Imbo. If you want to use several host
names you can update the ServerAlias line as well. You must also update DocumentRoot and Directory to
point to the public directory in the Imbo installation. If you want to enable logging update the CustomLog and
ErrorLog lines. RewriteCond and RewriteRule should be left alone.

1.2. Installation 5

http://httpd.apache.org/
http://nginx.org/
https://www.varnish-cache.org/
http://httpd.apache.org/docs/current/mod/mod_rewrite.html

Imbo, Release 2.2.3

Nginx

Below is an example on how to configure Nginx for Imbo. This example uses PHP via FastCGI:

server {
Listen on port 80
listen 80;

Define the server name
server_name imbo;

Use the line below instead of the server_name above if you want to use multiple
→˓host names

server_name imbo imbo1 imbo2 imbo3;

Path to the public directory where index.php is located
root /path/to/install/vendor/imbo/imbo/public;
index index.php;

Logs
error_log /var/log/nginx/imbo.error_log;
access_log /var/log/nginx/imbo.access_log main;

location / {
try_files $uri $uri/ /index.php?$args;
location ~ \.php$ {

fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /path/to/install/vendor/imbo/imbo/public/

→˓index.php;
include fastcgi_params;

}
}

}

You will need to update server_name to match the host name you will use for Imbo. If you want to use several
host names simply put several host names on that line. root must point to the public directory in the Imbo
installation. If you want to enable logging update the error_log and access_log lines. You must also update
the fastcgi_param SCRIPT_FILENAME line to point to the public/index.php file in the Imbo installation.

Lighttpd

Below is an example on how to configure Lighttpd for Imbo. Running PHP through FastCGI is recommended (not
covered here).

Use the line below instead of the next one if you want to use multiple host names
$HTTP["host"] =~ "^(imbo|imbo1|imbo2|imbo3)$" {

$HTTP["host"] == "imbo" {
Listen on port 80
server.port = 80

Path to the public directory where index.php is located
server.document-root = "/path/to/install/vendor/imbo/imbo/public"

Logs

(continues on next page)

6 Chapter 1. Installation guide

http://www.fastcgi.com/

Imbo, Release 2.2.3

(continued from previous page)

server.errorlog = "/var/log/lighttpd/imbo.error_log"
accesslog.filename = "/var/log/lighttpd/imbo.access_log"

Rewrite all to index.php
url.rewrite-if-not-file = ("^/[^\?]*(\?.*)?$" => "index.php/$1")

}

You will need to set the correct host name(s) used with $HTTP["host"] and update the server.
document-root to point to the correct path. If you want to enable logging remove the comments on the lines
with server.errorlog and accesslog.filename and set the correct paths. If you want to specify a custom
access log path you will need to enable the mod_accesslog module.

This example requires the mod_rewrite module to be loaded.

Varnish

Imbo strives to follow the HTTP Protocol, and can because of this easily leverage Varnish.

The only required configuration you need in your VCL is a default backend:

backend default {
.host = "127.0.0.1";
.port = "81";

}

where .host and .port is where Varnish can reach your web server.

If you use the same host name (or a sub-domain) for your Imbo installation as other services, that in turn uses Cookies,
you might want the VCL to ignore these Cookies for the requests made against your Imbo installation (unless you
have implemented event listeners for Imbo that uses Cookies). To achieve this you can put the following snippet into
your VCL file:

sub vcl_recv {
if (req.http.host == "imbo.example.com") {

unset req.http.Cookie;
}

}

or, if you have Imbo installed in some path:

sub vcl_recv {
if (req.http.host ~ "^(www.)?example.com$" && req.url ~ "^/imbo/") {

unset req.http.Cookie;
}

}

if your Imbo installation is available on [www.]example.com/imbo.

1.2.4 Database setup

If you choose to use a RDBMS to store data in, you will need to manually create a database, a user and the tables Imbo
stores information in. Below you will find schemas for different RDBMSs. You will find information regarding how
to authenticate against the RDBMS of you choice in the Configuration topic.

1.2. Installation 7

http://www.ietf.org/rfc/rfc2616.txt
https://www.varnish-cache.org/
https://www.varnish-cache.org/docs/3.0/reference/vcl.html
http://en.wikipedia.org/wiki/HTTP_cookie

Imbo, Release 2.2.3

MySQL

CREATE TABLE IF NOT EXISTS `imageinfo` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`user` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`imageIdentifier` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`size` int(10) unsigned NOT NULL,
`extension` varchar(5) COLLATE utf8_danish_ci NOT NULL,
`mime` varchar(20) COLLATE utf8_danish_ci NOT NULL,
`added` int(10) unsigned NOT NULL,
`updated` int(10) unsigned NOT NULL,
`width` int(10) unsigned NOT NULL,
`height` int(10) unsigned NOT NULL,
`checksum` char(32) COLLATE utf8_danish_ci NOT NULL,
`originalChecksum` char(32) COLLATE utf8_danish_ci NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `image` (`user`,`imageIdentifier`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS `metadata` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`imageId` int(10) unsigned NOT NULL,
`tagName` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`tagValue` varchar(255) COLLATE utf8_danish_ci NOT NULL,
PRIMARY KEY (`id`),
KEY `imageId` (`imageId`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS `shorturl` (
`shortUrlId` char(7) COLLATE utf8_danish_ci NOT NULL,
`user` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`imageIdentifier` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`extension` char(3) COLLATE utf8_danish_ci DEFAULT NULL,
`query` text COLLATE utf8_danish_ci NOT NULL,
PRIMARY KEY (`shortUrlId`),
KEY `params` (`user`,`imageIdentifier`,`extension`,`query`(255))

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci;

CREATE TABLE IF NOT EXISTS `storage_images` (
`user` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`imageIdentifier` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`data` blob NOT NULL,
`updated` int(10) unsigned NOT NULL,
PRIMARY KEY (`user`,`imageIdentifier`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci;

CREATE TABLE IF NOT EXISTS `storage_image_variations` (
`user` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`imageIdentifier` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`width` int(10) unsigned NOT NULL,
`data` blob NOT NULL,
PRIMARY KEY (`user`,`imageIdentifier`,`width`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci;

CREATE TABLE IF NOT EXISTS `imagevariations` (
`user` varchar(255) COLLATE utf8_danish_ci NOT NULL,
`imageIdentifier` varchar(255) COLLATE utf8_danish_ci NOT NULL,

(continues on next page)

8 Chapter 1. Installation guide

Imbo, Release 2.2.3

(continued from previous page)

`width` int(10) unsigned NOT NULL,
`height` int(10) unsigned NOT NULL,
`added` int(10) unsigned NOT NULL,
PRIMARY KEY (`user`,`imageIdentifier`,`width`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci;

The storage_images table is only needed if you plan on storing the actual images in the database as well.

SQLite

CREATE TABLE IF NOT EXISTS imageinfo (
id INTEGER PRIMARY KEY NOT NULL,
user TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
size INTEGER NOT NULL,
extension TEXT NOT NULL,
mime TEXT NOT NULL,
added INTEGER NOT NULL,
updated INTEGER NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
checksum TEXT NOT NULL,
originalChecksum TEXT NOT NULL,
UNIQUE (user,imageIdentifier)

);

CREATE TABLE IF NOT EXISTS metadata (
id INTEGER PRIMARY KEY NOT NULL,
imageId KEY INTEGER NOT NULL,
tagName TEXT NOT NULL,
tagValue TEXT NOT NULL

);

CREATE TABLE IF NOT EXISTS shorturl (
shortUrlId TEXT PRIMARY KEY NOT NULL,
user TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
extension TEXT,
query TEXT NOT NULL

);

CREATE INDEX shorturlparams ON shorturl (
user,
imageIdentifier,
extension,
query

);

CREATE TABLE IF NOT EXISTS storage_images (
user TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
data BLOB NOT NULL,
updated INTEGER NOT NULL,
PRIMARY KEY (user,imageIdentifier)

);

(continues on next page)

1.2. Installation 9

Imbo, Release 2.2.3

(continued from previous page)

CREATE TABLE IF NOT EXISTS storage_image_variations (
user TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
width INTEGER NOT NULL,
data BLOB NOT NULL,
PRIMARY KEY (user,imageIdentifier,width)

);

CREATE TABLE IF NOT EXISTS imagevariations (
user TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
added INTEGER NOT NULL,
PRIMARY KEY (user,imageIdentifier,width)

);

The storage_images table is only needed if you plan on storing the actual images in the database as well.

1.3 Upgrading Imbo

Depending on the installation method you chose, upgrading Imbo can be done quite easily. If you went for the
recommended version you will only have to bump the version number in your custom composer.json file and run
composer update.

If you did a git clone you could simply do a git pull to update your working copy.

From time to time Imbo will introduce new features or fix bugs that might require you to update the contents of
the database you choose to use. This chapter will contain all information you need to keep your installation up to
date. Each of the following sections include the necessary steps you need to execute when upgrading to the different
versions.

1.3.1 Imbo-2.3.0

The following classes have been deprecated, and will be removed in Imbo-3.0.0:

• Imbo\Image\Identifier\Generator\Md5

1.3.2 Imbo-2.0.0

Below are the changes you need to be aware of when upgrading to Imbo-2.0.0.

• Public key is an authentication detail

– Doctrine

– MongoDB

– GridFS

• Image identifiers are no longer MD5-sums

10 Chapter 1. Installation guide

Imbo, Release 2.2.3

Public key is an authentication detail

Versions prior to 2.0.0 had a 1:1 correlation between what a user and a public key was. In 2.0.0, a user is the
entity which images belong to, while a public key is one part of the authentication scheme. Public keys each
has their own set of permissions, which can grant them access to different resources within different users.

Imbo provides some level of backwards compatibility with the old auth part of the configuration file, but no longer
supports multiple private keys per public key (such as read-only/read+write). If you are using this, Imbo will throw an
exception on startup. We recommend moving away from the auth setup and onto the new Access Control adapters
as soon as possible.

Prior to 2.0.0, both the database and HTTP endpoints used a field name of publicKey to identify the user. Going
forward, apart from when working with authentication, user will be the new field name. This requires some database
changes - see below.

Doctrine

If you use the Doctrine database adapter you’ll need to rename the publicKey fields to user. The field has been
updated in the Database setup section. The field should be renamed while there are no write operations pending, as a
write could fail before upgrading Imbo itself.

Postgres/Other

ALTER TABLE imageinfo RENAME COLUMN publicKey to user;
ALTER TABLE shorturl RENAME COLUMN publicKey to user;
ALTER TABLE imagevariations RENAME COLUMN publicKey to user;

MySQL

ALTER TABLE imageinfo CHANGE `publicKey` `user` varchar(255) COLLATE utf8_danish_ci
→˓NOT NULL;
ALTER TABLE shorturl CHANGE `publicKey` `user` varchar(255) COLLATE utf8_danish_ci
→˓NOT NULL;
ALTER TABLE imagevariations CHANGE `publicKey` `user` varchar(255) COLLATE utf8_
→˓danish_ci NOT NULL;

If you use the Doctrine storage adapter for images and/or image variations, you will have to rename fields in those
databases too:

Postgres/Other

ALTER TABLE storage_images RENAME COLUMN publicKey to user;
ALTER TABLE storage_image_variations RENAME COLUMN publicKey to user;

MySQL

1.3. Upgrading Imbo 11

Imbo, Release 2.2.3

ALTER TABLE storage_images CHANGE `publicKey` `user` varchar(255) COLLATE utf8_danish_
→˓ci NOT NULL;
ALTER TABLE storage_image_variations CHANGE `publicKey` `user` varchar(255) COLLATE
→˓utf8_danish_ci NOT NULL;

Note: The imagevariations and storage_image_variations tables might not be present in your
database unless you previously upgraded to 1.2.4. In this case, skip the queries affecting those tables and instead
follow the instructions specified in the Database setup section.

MongoDB

If you use the MongoDB adapter, you will need to rename the publicKey field with the following queries:

db.image.update({}, { $rename: { 'publicKey': 'user' } }, { multi: true })
db.shortUrl.update({}, { $rename: { 'publicKey': 'user' } }, { multi: true })
db.imagevariation.update({}, { $rename: { 'publicKey': 'user' } }, { multi: true })

Note: The imagevariation collection might not be present in your database unless you previously upgraded to
1.2.4. In this case, skip the last query and instead follow the instructions specified in the Database setup section.

GridFS

If you use the GridFS adapter, you will need to rename the publicKey field with the following query:

db.fs.files.update({}, { $rename: { 'publicKey': 'user' } }, { multi: true })

Note: The default database names for the GridFS adapters are imbo_storage and
imbo_imagevariation_storage. The query specified should be run on both databases. If the
imbo_imagevariation_storage database does not exist, run the query on imbo_storage and
follow the instructions specified in the Database setup section to create the appropriate indexes for the
imbo_imagevariation_storage database.

Image identifiers are no longer MD5-sums

Previously, Imbo used the MD5 algorithm to generate the image identifier for an image. In Imbo 2.0.0 and onwards,
image identifiers are simply randomly generated strings. This means that the same image can exist multiple times
within the same user. If this is not what you want, you can check if the image already exists by querying the images
resource and specifying the MD5-sum of the image as an originalChecksum-filter. Most Imbo-clients implement
this already, as imageExists() or similar.

To accommodate the new image identifiers and the possibility of future changes in how they are represented, databases
should be able to store an image identifier of up to 255 characters. If you are using the Doctrine database adapter
with the suggested schema on a MySQL database, this will require some changes:

12 Chapter 1. Installation guide

Imbo, Release 2.2.3

ALTER TABLE imageinfo MODIFY imageIdentifier varchar(255) COLLATE utf8_danish_ci NOT
→˓NULL;
ALTER TABLE shorturl MODIFY imageIdentifier varchar(255) COLLATE utf8_danish_ci NOT
→˓NULL;
ALTER TABLE imagevariations MODIFY imageIdentifier varchar(255) COLLATE utf8_danish_
→˓ci NOT NULL;

If you use the Doctrine storage adapter for images and/or image variations, you will have to rename fields in those
databases too:

ALTER TABLE storage_images MODIFY imageIdentifier varchar(255) COLLATE utf8_danish_ci
→˓NOT NULL;
ALTER TABLE storage_image_variations MODIFY imageIdentifier varchar(255) COLLATE utf8_
→˓danish_ci NOT NULL;

Note: The imagevariations and storage_image_variations table might not be present in your database
unless you previously upgraded to 1.2.4. In this case, skip the queries affecting those tables and instead follow the
instructions specified in the Database setup section.

1.3.3 Imbo-1.2.4

A new Image Variations event listener was introduced. It is disabled by default, and to use it you will have to configure
a database and storage adapter for it - depending on your choice of adapters, you might need to modify your database.
See the Database setup section.

1.3.4 Imbo-1.2.0

Below are the changes you need to be aware of when upgrading to Imbo-1.2.0.

• Response to metadata write operations

• Original checksum

– Doctrine

– MongoDB

• Short image URLs

Response to metadata write operations

Versions prior to 1.2.0 contained the image identifier in the response to HTTP POST/PUT/DELETE against the
metadata resource. Starting from Imbo-1.2.0 the response to these requests will contain the metadata attached to the
image instead. Read more about the different responses in the metadata resource section.

Original checksum

Imbo-1.2.0 includes a new feature that lets you filter images based on the original checksum of the image when
querying the images resource. For this to work you need to add a field to your database. You can also populate this

1.3. Upgrading Imbo 13

Imbo, Release 2.2.3

field for all images if you want, but this is not required. If you have event listeners that update incoming images, the
values already stored in the database under the checksum field (which is used to populate the originalChecksum
field in the following examples) might not be the checksum of the original image. If you don’t have such event listeners
added to your configuration you should be able to update the data as explained below and end up with 100% correct
results.

Doctrine

If you use the Doctrine database adapter you’ll need to add the new originalChecksum field to the table. The
field has also been added to the Database setup section. The field should be added while there are no write operations
pending, as a write could fail before upgrading Imbo itself.

ALTER TABLE imageinfo ADD COLUMN `originalChecksum` char(32) COLLATE utf8_danish_ci
→˓NOT NULL;

When you have added the field to your database you can run the following query to update all rows in the database:

UPDATE `imageinfo` SET `originalChecksum` = `checksum`

This query will simply copy the value of the existing checksum field over to originalChecksum. If you have a
lot of images this operation might take a while.

MongoDB

If you use the MongoDB adapter all you need to do is to update all entries in the image collection:

db.image.find().forEach(
function (elem) {

db.image.update(
{ _id: elem._id },
{ $set: { originalChecksum: elem.checksum }}

);
}

)

Short image URLs

In versions prior to Imbo-1.2.0 short image URLs were created automatically whenever a user agent requested the
image resource (with or without transformations), and sent in the response as the X-Imbo-ShortUrl header. This
no longer done automatically. Refer to the Short URLs resource - /users/<user>/images/<image>/shorturls section
for more information on how to generate short URLs from this version on.

1.4 Configuration

Imbo ships with a default configuration file that will be automatically loaded. You will have to create one or more
configuration files of your own that will be automatically merged with the default configuration by Imbo. The location
of these files depends on the installation method you choose. You should never have to edit the default configuration
file provided by Imbo.

The configuration file(s) you need to create should simply return arrays with configuration data. All available config-
uration options are covered in this chapter.

14 Chapter 1. Installation guide

Imbo, Release 2.2.3

• Using callables in configuration

• Imbo access control - accessControl

• Database configuration - database

• Storage configuration - storage

• Image identifier generation - imageIdentifierGenerator

• HTTP cache headers - httpCacheHeaders

• Content negotiation for images - contentNegotiateImages

• Trusted proxies - trustedProxies

• Authentication protocol - authentication

• Event listeners - eventListeners

• Event listener initializers - eventListenerInitializers

• Image transformation presets - transformationPresets

• Custom resources and routes - resources and routes

1.4.1 Using callables in configuration

Imbo supports providing callables for certain configuration options. In Imbo 2 these are the accessControl, database,
eventListeners[name], resource and storage options, while Imbo 3 adds callable support for transformationPresets.
The callable receives two arguments ($request and $response) which map to the active request and response objects.

By using a callable you can extend Imbo with custom logic for most configuration options (or provide the $request
or $response objects to your implementing class), such as switching storage modules based on which user per-
formed the request.

1.4.2 Imbo access control - accessControl

Imbo catalogs stored images under a user. To add an image to a given user, you need a public and private key pair.
This pair is used to sign requests to Imbo’s API and ensures that the API can’t be accessed without knowing the private
key.

Multiple public keys can be given access to a user, and you can also configure a public key to have access to several
users. It’s important to note that a user doesn’t have to be created in any way - as long as a public key is defined to
have access to a given user, you’re ready to start adding images.

Public keys can be configured to have varying degrees of access. For instance, you might want one public key for
write operations (such as adding and deleting images) and a different public key for read operations (such as viewing
images and applying transformations to them). Access is defined on a resource basis - which basically translates to
an API endpoint and an HTTP method. To retrieve an image, for instance, you would give access to the image.get
resource.

Specifying a long list of resources can get tedious, so Imbo also supports resource groups - basically just a list
of different resources. When creating access rules for a public key, these can be used instead of specifying specific
resources.

For the private keys you can for instance use a SHA-256 hash of a random value. The private key is used by clients
to sign requests, and if you accidentally give away your private key users can use it to delete all your images (given

1.4. Configuration 15

http://en.wikipedia.org/wiki/SHA-2

Imbo, Release 2.2.3

the public key it belongs to has write access). Make sure not to generate a private key that is easy to guess (like for
instance the MD5 or SHA-256 hash of the public key). Imbo does not require the private key to be in a specific format,
so you can also use regular passwords if you want. The key itself will never be a part of the payload sent to/from the
server.

Imbo ships with a small command line tool that can be used to generate private keys for you using the
openssl_random_pseudo_bytes function. The tool is located in the bin directory of the Imbo installation:

$./bin/imbo generate-private-key
3b98dde5f67989a878b8b268d82f81f0858d4f1954597cc713ae161cdffcc84a

The private key can be changed whenever you want as long as you remember to change it in both the server config-
uration and in the client you use. The user can not be changed easily as database and storage adapters use it when
storing/fetching images and metadata.

Access control is managed by adapters. The simplest adapter is the SimpleArrayAdapter, which has a
number of trade-offs in favor of being easy to set up. Mainly, it expects the public key to have the same name as the
user it should have access to, and that the public key should be given full read+write access to all resources belonging
to that user.

Warning: It’s not recommended that you use the same public key for both read and write operations. Read on to
see how you can create different public keys for read and read/write access.

The adapter is set up using the accessControl key in your configuration file:

<?php
return [

// ...

'accessControl' => function() {
return new Imbo\Auth\AccessControl\Adapter\SimpleArrayAdapter([

'some-user' => 'my-super-secret-private-key',
'other-user' => 'other-super-secret-private-key',

]);
},

// ...
];

It’s usually a good idea to have separate public keys for read-only and read+write operations. You can achieve this by
using a more flexible access control adapter, such as the ArrayAdapter:

<?php
use Imbo\Auth\AccessControl\Adapter\ArrayAdapter,

Imbo\Resource;

return [
// ...

'accessControl' => function() {
return new ArrayAdapter([

[
'publicKey' => 'some-read-only-pubkey',
'privateKey' => 'some-private-key',
'acl' => [[

'resources' => Resource::getReadOnlyResources(),

(continues on next page)

16 Chapter 1. Installation guide

http://php.net/openssl_random_pseudo_bytes

Imbo, Release 2.2.3

(continued from previous page)

'users' => ['some-user']
]]

],
[

'publicKey' => 'some-read-write-pubkey',
'privateKey' => 'some-other-private-key',
'acl' => [[

'resources' => Resource::getReadWriteResources(),
'users' => ['some-user']

]]
]

]);
}

// ...
];

As you can see, the ArrayAdapter is much more flexible than the SimpleArrayAdapter. The above example
only shows part of this flexibility. You can also provide resource groups and multiple access control rules per public
key. The following example shows this more clearly:

<?php
use Imbo\Auth\AccessControl\Adapter\ArrayAdapter,

Imbo\Resource

return [
// ...

'accessControl' => function() {
return new ArrayAdapter([

[
// A unique public key matching the following regular expression: [A-

→˓Za-z0-9_-]{1,}
'publicKey' => 'some-pubkey',

// Some form of private key
'privateKey' => 'some-private-key',

// Array of rules for this public key
'acl' => [

[
// An array of different resource names that the public key

→˓should have
// access to - see AdapterInterface::RESOURCE_* for available

→˓options.
'resources' => Resource::getReadOnlyResources(),

// Names of the users which the public key should have access
→˓to.

'users' => ['some', 'users'],
],

// Multiple rules can be applied in order to make a single public
→˓key have

// different access rights on different users
[

(continues on next page)

1.4. Configuration 17

Imbo, Release 2.2.3

(continued from previous page)

'resources' => Resource::getReadWriteResources(),
'users' => ['different-user'],

],

// You can also specify resource groups instead of explicitly
→˓setting them like

// in the above examples. Note that you cannot specify both
→˓resources and group

// in the same rule.
[

'group' => 'read-stats',
'users' => ['user1', 'user2']

]
]

]
], [

// Second argument to the ArrayAdapter being the available resource groups
// Format: 'name' => ['resource1', 'resource2']
'read-stats' => ['user.get', 'user.head', 'user.options'],

]);
},

// ...
];

Imbo also ships with a MongoDB access control adapter, which is mutable. This means you can manipulate the access
control rules on the fly, using Imbo’s API. The adapter uses PHP’s mongo extension. The following parameters are
supported:

databaseName Name of the database to use. Defaults to imbo.

server The server string to use when connecting. Defaults to mongodb://localhost:27017.

options Options passed to the underlying adapter. Defaults to ['connect' => true, 'timeout' =>
1000]. See the manual for the MongoClient constructor for available options.

<?php
return [

// ...

'accessControl' => function() {
return new Imbo\Auth\AccessControl\Adapter\MongoDB([

'databaseName' => 'imbo-acl'
]);

},

// ...
];

When using a mutable access control adapter, you will need to create an initial public key that can subsequently be
used to create other public keys. The easiest way to create public keys when using a mutable adapter is to utilize the
add-public-key command provided by the CLI tool that Imbo is shipped with.

1.4.3 Database configuration - database

The database adapter you decide to use is responsible for storing metadata and basic image information, like width
and height for example, along with the generated short URLs. Imbo ships with some different database adapters that

18 Chapter 1. Installation guide

http://pecl.php.net/package/mongo
http://www.php.net/manual/en/mongoclient.construct.php

Imbo, Release 2.2.3

you can use. Remember that you will not be able to switch the adapter whenever you want and expect all data to be
automatically transferred. Choosing a database adapter should be a long term commitment unless you have migration
scripts available.

In the default configuration file the MongoDB database adapter is used. You can choose to override this in your
configuration file by specifying a different adapter. You can either specify an instance of a database adapter directly,
or specify a closure that will return an instance of a database adapter when executed. Which database adapter to use is
specified in the database key in the configuration array:

<?php
return [

// ...

'database' => function() {
return new Imbo\Database\MongoDB([

'databaseName' => 'imbo',
]);

},

// or

'database' => new Imbo\Database\MongoDB([
'databaseName' => 'imbo',

]),

// ...
);

Below you will find documentation on the different database adapters Imbo ships with.

• Doctrine

• MongoDB

• Mongo

• Custom database adapter

Doctrine

This adapter uses the Doctrine Database Abstraction Layer. The options you pass to the constructor of this adapter
is passed to the underlying classes, so have a look at the Doctrine DBAL documentation over at doctrine-project.org.
When using this adapter you need to create the required tables in the RDBMS first, as specified in the Database setup
section.

Examples

Here are some examples on how to use the Doctrine adapter in the configuration file:

1. Connect to a SQLite database:

<?php
return [

// ...

(continues on next page)

1.4. Configuration 19

http://www.doctrine-project.org/projects/dbal.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html

Imbo, Release 2.2.3

(continued from previous page)

'database' => function() {
return new Imbo\Database\Doctrine([

'path' => '/path/to/database',
'driver' => 'pdo_sqlite',

]);
},

// ...
];

2. Connect to a MySQL database:

<?php
return [

// ...

'database' => function() {
return new Imbo\Database\Doctrine([

'dbname' => 'database',
'user' => 'username',
'password' => 'password',
'host' => 'hostname',
'driver' => 'pdo_mysql',

]);
},

// ...
];

Warning: Connecting to a database by specifying a PDO instance in the pdo element of the configuration array
is deprecated as of Imbo v2.3, and will be removed in Imbo v3.

MongoDB

This adapter uses PHP’s mongo extension to store data in MongoDB. The following parameters are supported:

databaseName Name of the database to use. Defaults to imbo.

server The server string to use when connecting. Defaults to mongodb://localhost:27017.

options Options passed to the underlying adapter. Defaults to ['connect' => true, 'timeout' =>
1000]. See the manual for the MongoClient constructor for available options.

Examples

1. Connect to a local MongoDB instance using the default databaseName:

<?php
return [

// ...

(continues on next page)

20 Chapter 1. Installation guide

http://pecl.php.net/package/mongo
http://www.mongodb.org/
http://www.php.net/manual/en/mongoclient.construct.php

Imbo, Release 2.2.3

(continued from previous page)

'database' => function() {
return new Imbo\Database\MongoDB();

},

// ...
];

2. Connect to a replica set:

<?php
return [

// ...

'database' => function() {
return new Imbo\Database\MongoDB([

'server' => 'mongodb://server1,server2,server3',
'options' => [

'replicaSet' => 'nameOfReplicaSet',
],

]);
},

// ...
];

Mongo

This adapter uses PHP’s mongodb extension. It can be configured in the same was as the MongoDB adapter.

Custom database adapter

If you need to create your own database adapter you need to create a class that implements the
Imbo\Database\DatabaseInterface interface, and then specify that adapter in the configuration:

<?php
return [

// ...

'database' => function() {
return new My\Custom\Adapter([

'some' => 'option',
]);

},

// ...
];

You can read more about how to achieve this in the Implement your own database and/or storage adapter chapter.

1.4.4 Storage configuration - storage

Storage adapters are responsible for storing the original images you put into Imbo. As with the database adapter it
is not possible to simply switch the adapter without having migration scripts available to move the stored images.

1.4. Configuration 21

http://www.mongodb.org/display/DOCS/Replica+Sets
http://pecl.php.net/package/mongodb

Imbo, Release 2.2.3

Choose an adapter with care.

In the default configuration file the GridFS storage adapter is used. You can choose to override this in your configura-
tion file by specifying a different adapter. You can either specify an instance of a storage adapter directly, or specify
a closure that will return an instance of a storage adapter when executed. Which storage adapter to use is specified in
the storage key in the configuration array:

<?php
return [

// ...

'storage' => function() {
return new Imbo\Storage\Filesystem([

'dataDir' => '/path/to/images',
]);

},

// or

'storage' => new Imbo\Storage\Filesystem([
'dataDir' => '/path/to/images',

]),

// ...
];

Below you will find documentation on the different storage adapters Imbo ships with.

• Amazon Simple Storage Service

• Doctrine (deprecated)

• Filesystem

• GridFS

• Custom storage adapter

Amazon Simple Storage Service

This adapter stores your images in a bucket in the Amazon Simple Storage Service (S3). The parameters are:

key Your AWS access key

secret Your AWS secret key

bucket The name of the bucket you want to store your images in. Imbo will not create this for you.

This adapter creates subdirectories in the bucket in the same fashion as the Filesystem storage adapter stores the files
on the local filesystem.

Examples

<?php
return [

// ...
(continues on next page)

22 Chapter 1. Installation guide

Imbo, Release 2.2.3

(continued from previous page)

'storage' => function() {
new Imbo\Storage\S3([

'key' => '<aws access key>'
'secret' => '<aws secret key>',
'bucket' => 'my-imbo-bucket',

]);
},

// ...
];

Doctrine (deprecated)

Warning: This adapter is deprecated as of Imbo v2.3, and will be removed in Imbo v3.

This adapter uses the Doctrine Database Abstraction Layer. The options you pass to the constructor of this adapter
is passed to the underlying classes, so have a look at the Doctrine DBAL documentation over at doctrine-project.org.
When using this adapter you need to create the required tables in the RDBMS first, as specified in the Database setup
section.

Examples

Here are some examples on how to use the Doctrine adapter in the configuration file:

1. Connect to a SQLite database:

<?php
return [

// ...

'storage' => function() {
return new Imbo\Storage\Doctrine([

'path' => '/path/to/database',
'driver' => 'pdo_sqlite',

]);
},

// ...
];

2. Connect to a MySQL database:

<?php
return [

// ...

'storage' => function() {
return new Imbo\Storage\Doctrine([

'dbname' => 'database',
'user' => 'username',

(continues on next page)

1.4. Configuration 23

http://www.doctrine-project.org/projects/dbal.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html

Imbo, Release 2.2.3

(continued from previous page)

'password' => 'password',
'host' => 'hostname',
'driver' => 'pdo_mysql',

]);
},

// ...
];

Filesystem

This adapter simply stores all images on the file system. It has a single parameter, and that is the base directory of
where you want your images stored:

dataDir The base path where the images are stored.

This adapter is configured to create subdirectories inside of dataDir based on the user and the checksum of the
images added to Imbo. The algorithm that generates the path simply takes the three first characters of the user and
creates directories for each of them, then the complete user, then a directory of each of the first characters in the image
identifier, and lastly it stores the image in a file with a filename equal to the image identifier itself. For instance, an
image stored under the user foobar with the image identifier 5c01e554-9fca-4231-bb95-a6eabf259b64
would be stored as <dataDir>/f/o/o/foobar/5/c/0/5c01e554-9fca-4231-bb95-a6eabf259b64.

Examples

1. Store images in /path/to/images:

<?php
return [

// ...

'storage' => function() {
new Imbo\Storage\Filesystem([

'dataDir' => '/path/to/images',
]);

},

// ...
];

GridFS

The GridFS adapter is used to store the images in MongoDB using the GridFS specification. This adapter has the
following parameters:

databaseName The name of the database to store the images in. Defaults to imbo_storage.

server The server string to use when connecting to MongoDB. Defaults to mongodb://localhost:27017

options Options passed to the underlying adapter. Defaults to ['connect' => true, 'timeout' =>
1000]. See the manual for the MongoClient constructor for available options.

24 Chapter 1. Installation guide

http://www.mongodb.org/display/DOCS/GridFS
http://www.php.net/manual/en/mongoclient.construct.php

Imbo, Release 2.2.3

Examples

1. Connect to a local MongoDB instance using the default databaseName:

<?php
return [

// ...

'storage' => function() {
return new Imbo\Storage\GridFS();

},

// ...
];

2. Connect to a replica set:

<?php
return [

// ...

'storage' => function() {
return new Imbo\Storage\GridFS([

'server' => 'mongodb://server1,server2,server3',
'options' => [

'replicaSet' => 'nameOfReplicaSet',
],

]);
},

// ...
];

Custom storage adapter

If you need to create your own storage adapter you need to create a class that implements the
Imbo\Storage\StorageInterface interface, and then specify that adapter in the configuration:

<?php
return [

// ...

'storage' => function() {
return new My\Custom\Adapter([

'some' => 'option',
]);

},

// ...
];

You can read more about how to achieve this in the Implement your own database and/or storage adapter chapter.

1.4. Configuration 25

Imbo, Release 2.2.3

1.4.5 Image identifier generation - imageIdentifierGenerator

By default, Imbo will generate a random string of characters as the image identifier for added images. These are in the
RegExp range [A-Za-z0-9_-] and by default, the identifier will be 12 characters long.

You can easily change the generation process to a different method. Imbo currently ships with two generators:

RandomString

The default, as stated above. This generator has the following parameters:

length The length of the randomly generated string. Defaults to 12.

Uuid

Generates 36-character v4 UUIDs, for instance f47ac10b-58cc-4372-a567-0e02b2c3d479. This generator
does not have any parameters.

Usage:

<?php
return [

// ...

'imageIdentifierGenerator' => new Imbo\Image\Identifier\Generator\Uuid(),

// ...
];

Custom generators

To create your own custom image identifier generators, simply create a class that implements
Imbo\Image\Identifier\Generator\GeneratorInterface and ensure that the identifiers gener-
ated are in the character range [A-Za-z0-9_-] and are between one and 255 characters long.

1.4.6 HTTP cache headers - httpCacheHeaders

Imbo ships with reasonable defaults for which HTTP cache header settings it sends to clients. For some resources,
however, it can be difficult to figure out a good middle ground between clients asking too often and too rarely. For
instance, the images resource will change every time a new image has been added - but whether that happens once a
second or once a year is hard to know.

To ensure that clients get fresh responses, Imbo sends max-age=0, must-revalidate on these kind of re-
sources. You can however override these defaults in the configuration. For instance, if you wanted to set the max-age
to 30 seconds, leave it up to the client if it should re-validate and tell intermediary proxies that this response is private,
you could set the configuration to the following:

<?php
return [

// ...

'httpCacheHeaders' => [
'maxAge' => 30,

(continues on next page)

26 Chapter 1. Installation guide

Imbo, Release 2.2.3

(continued from previous page)

'mustRevalidate' => false,
'public' => false,

],

// ...
];

1.4.7 Content negotiation for images - contentNegotiateImages

By default, Imbo will do content negotiation for images. In other words, if a request is sent for an image with the
Accept-header image/jpeg, it will try to deliver the image in JPEG-format.

If what you want is for images to be delivered in the format they were uploaded in, you can set
contentNegotiateImages to false in the configuration. This will also ensure Imbo does not include Accept
in the Vary-header for image requests, which will make caching behind reverse proxies more efficient.

You are still able to convert between formats by specifying an extension when requesting the image (.jpg, .png, .gif
etc).

1.4.8 Trusted proxies - trustedProxies

If you find yourself behind some sort of reverse proxy (like a load balancer), certain header information may be sent
to you using special X-Forwarded-* headers. For example, the Host HTTP-header is usually used to return the
requested host. But when you’re behind a proxy, the true host may be stored in an X-Forwarded-Host header.

Since HTTP headers can be spoofed, Imbo does not trust these proxy headers by default. If you are behind a proxy,
you should manually whitelist your proxy. This can be done by defining the proxies IP addresses and/or using CIDR
notations. Example:

<?php
return [

// ...

'trustedProxies' => ['192.0.0.1', '10.0.0.0/8'],

// ...
];

Note: Not all proxies set the required X-Forwarded-* headers by default. A search for X-Forwarded-Proto
<your proxy here> usually gives helpful answers to how you can add them to incoming requests.

1.4.9 Authentication protocol - authentication

Imbo generates access tokens and authentication signatures based on the incoming URL, and includes the protocol (by
default). This can sometimes be problematic, for instance when Imbo is behind a load balancer which doesn’t send
X-Forwarded-Proto header, or if you want to use protocol-less image URLs on the client side (//imbo.host/
users/some-user/images/img).

Setting the protocol option under authentication allows you to control how Imbo’s authentication should
behave. The option has the following possible values:

1.4. Configuration 27

Imbo, Release 2.2.3

incoming Will try to detect the incoming protocol - this is based on $_SERVER['HTTPS'] or the
X-Forwarded-Proto header (given the trustedProxies option is configured). This is the default value.

both Will try to match based on both HTTP and HTTPS protocols and allow the request if any of them yields the
correct signature/access token.

http Will always use http as the protocol, replacing https with http in the incoming URL, if that is the case.

https Will always use https as the protocol, replacing http with https in the incoming URL, if that is the case.

Example usage:

<?php
return [

// ...

'authentication' => [
'protocol' => 'both',

],

// ...
];

1.4.10 Event listeners - eventListeners

Imbo support event listeners that you can use to hook into Imbo at different phases without having to edit Imbo itself.
An event listener is simply a piece of code that will be executed when a certain event is triggered from Imbo. Event
listeners are added to the eventListeners part of the configuration array as associative arrays. If you want to
disable some of the default event listeners simply specify the same key in your configuration file and set the value to
null or false. Keep in mind that not all event listeners should be disabled.

Event listeners can be configured in the following ways:

1. A string representing a class name of a class implementing the
Imbo\EventListener\ListenerInteface interface:

<?php
return [

// ...

'eventListeners' => [
'accessToken' => 'Imbo\EventListener\AccessToken',

],

// ...
];

2. Use an instance of a class implementing the Imbo\EventListener\ListenerInterface interface:

<?php
return [

// ...

'eventListeners' => [
'accessToken' => new Imbo\EventListener\AccessToken(),

],

(continues on next page)

28 Chapter 1. Installation guide

Imbo, Release 2.2.3

(continued from previous page)

// ...
];

3. A closure returning an instance of a class implementing the Imbo\EventListener\ListenerInterface
interface:

<?php
return [

// ...

'eventListeners' => [
'accessToken' => function() {

return new Imbo\EventListener\AccessToken();
},

],

// ...
];

4. Use a class implementing the Imbo\EventListener\ListenerInterface interface together with an
optional user filter:

<?php
return [

// ...

'eventListeners' => [
'maxImageSize' => [

'listener' => new Imbo\EventListener\MaxImageSize(1024, 768),
'users' => [

'whitelist' => ['user'],
// 'blacklist' => ['someotheruser'],

],
// 'params' => [...]

],
],

// ...
];

where listener is one of the following:

1. a string representing a class name of a class implementing the Imbo\EventListener\ListenerInterface
interface

2. an instance of the Imbo\EventListener\ListenerInterface interface

3. a closure returning an instance Imbo\EventListener\ListenerInterface

The users element is an array that you can use if you want your listener to only be triggered for some users. The
value of this is an array with two elements, whitelist and blacklist, where whitelist is an array of users
you want your listener to trigger for, and blacklist is an array of users you don’t want your listener to trigger for.
users is optional, and per default the listener will trigger for all users.

There also exists a params key that can be used to specify parameters for the event listener, if you choose to specify
the listener as a string in the listener key:

1.4. Configuration 29

Imbo, Release 2.2.3

<?php
return [

// ...

'eventListeners' => [
'maxImageSize' => [

'listener' => 'Imbo\EventListener\MaxImageSize',
'users' => [

'whitelist' => ['user'],
// 'blacklist' => ['someotheruser'],

],
'params' => [

'width' => 1024,
'height' => 768,

]
],

],

// ...
];

The value of the params array will be sent to the constructor of the event listener class.

5. Use a closure directly:

<?php
return [

// ...

'eventListeners' => [
'customListener' => [

'callback' => function(Imbo\EventManager\EventInterface $event) {
// Custom code

},
'events' => ['image.get'],
'priority' => 1,
'users' => [

'whitelist' => ['user'],
// 'blacklist' => ['someotheruser'],

],
],

],

// ...
];

where callback is the code you want executed, and events is an array of the events you want it triggered for.
priority is the priority of the listener and defaults to 0. The higher the number, the earlier in the chain your listener
will be triggered. This number can also be negative. Imbo’s internal event listeners uses numbers between 0 and
100. users uses the same format as described above. If you use this method, and want your callback to trigger for
multiple events with different priorities, specify an associative array in the events element, where the keys are the
event names, and the values are the priorities for the different events. This way of attaching event listeners should
mostly be used for quick and temporary solutions.

All event listeners will receive an event object (which implements Imbo\EventManager\EventInterface),
that is described in detail in the The event object section.

30 Chapter 1. Installation guide

Imbo, Release 2.2.3

Listeners added by default

The default configuration file includes some event listeners by default:

• Access token

• Authenticate

• Stats access

• Imagick

as well as event listeners for image transformations:

• autoRotate

• border

• canvas

• compress

• convert

• crop

• desaturate

• flipHorizontally

• flipVertically

• maxSize

• resize

• rotate

• sepia

• smartSize

• strip

• thumbnail

• transpose

• transverse

• vignette

• watermark

Read more about these listeners (and more) in the Customize your Imbo installation with event listeners and Trans-
forming images on the fly chapters. If you want to disable any of these you could do so in your configuration file in
the following way:

<?php
return [

// ...

'eventListeners' => [
'accessToken' => null,
'auth' => null,
'statsAccess' => null,

],

(continues on next page)

1.4. Configuration 31

Imbo, Release 2.2.3

(continued from previous page)

// ...
];

Warning: Do not disable the event listeners used in the example above unless you are absolutely sure about the
consequences. Your images can potentially be deleted by anyone.

Warning: Disabling image transformation event listeners is not recommended.

1.4.11 Event listener initializers - eventListenerInitializers

Some event listeners might require custom initialization, and if you don’t want to do this in-line in the configura-
tion, Imbo supports event listener initializer classes. This is handled via the eventListenerInitializers
key. The value of this element is an associative array where the keys identify the initializers (only used
in the configuration itself), and the values are strings representing class names, or implementations of the
Imbo\EventListener\Initializer\InitializerInterface interface. If you specify strings the
classes you refer to must also implement this interface.

The interface has a single method called initialize and receives instances of event listeners implementing the
Imbo\EventListener\ListenerInterface interface. This method is called once for each event listener
instantiated by Imbo’s event manager. Example:

<?php
// Some event listener
class Listener implements Imbo\EventListener\ListenerInterface {

public function setDependency($dependency) {
// ...

}

// ...
}

class OtherListener implements Imbo\EventListener\ListenerInterface {
public function setDependency($dependency) {

// ...
}

// ...
}

// Event listener initializer
class Initializer implements Imbo\EventListener\Initializer\InitializerInterface {

private $dependency;

public function __construct() {
$this->dependency = new SomeDependency();

}

public function initialize(Imbo\EventListener\ListenerInterface $listener) {
if ($listener instanceof Listener || $listener instanceof OtherListener) {

(continues on next page)

32 Chapter 1. Installation guide

Imbo, Release 2.2.3

(continued from previous page)

$listener->setDependency($this->dependency);
}

}
}

// Configuration
return [

'eventListeners' => [
'customListener' => 'Listener',
'otherCustomListener' => 'OtherListener',

],

'eventListenerInitializers' => [
'initializerForCustomListener' => 'Initializer',

],
];

In the above example the Initializer class will be instantiated by Imbo, and in the __construct method it
will create an instance of some dependency. When the event manager creates the instances of the two event listeners
these will in turn be sent to the initialize method, and the same dependency will be injected into both listeners.
An alternative way to accomplish this by using Closures in the configuration could look something like this:

<?php
$dependency = new SomeDependency();

return [
'eventListeners' => [

'customListener' => function() use ($dependency) {
$listener = new Listener();
$listener->setDependency($dependency);

return $listener;
},
'otherCustomListener' => function() use ($dependency) {

$listener = new OtherListener();
$listener->setDependency($dependency);

return $listener;
},

],
];

Imbo itself includes an event listener initializer in the default configuration that is used to inject the same instance of
Imagick to all image transformations.

Note: Only event listeners specified as strings (class names) in the configuration will be instantiated by Imbo, so
event listeners instantiated in the configuration array, either directly or via a Closures, will not be initialized by the
configured event listener initializers.

1.4.12 Image transformation presets - transformationPresets

Through the configuration you can also combine image transformations to make presets (transformation chains). This
is done via the transformationPresets key:

1.4. Configuration 33

Imbo, Release 2.2.3

<?php
return [

// ...

'transformationPresets' => [
'graythumb' => [

'thumbnail',
'desaturate',

],
// ...

],

// ...
];

where the keys are the names of the transformations as specified in the URL, and the values are arrays containing other
transformation names (as used in the eventListeners part of the configuration). You can also specify hard coded
parameters for the presets if some of the transformations in the chain supports parameters:

<?php
return [

// ...

'transformationPresets' => [
'fixedGraythumb' => [

'thumbnail' => [
'width' => 50,
'height' => 50,

],
'desaturate',

],
// ...

],

// ...
];

By doing this the thumbnail part of the fixedGraythumb preset will ignore the width and height query
parameters, if present. By only specifying for instance 'width' => 50 in the configuration the height of the
thumbnail can be adjusted via the query parameter, but the width is fixed.

Note: The URLs will stay the same if you change the transformation chain in a preset. Keep this in mind if you use
for instance Varnish or some other HTTP accelerator in front of your web server(s).

1.4.13 Custom resources and routes - resources and routes

Warning: Custom resources and routes is an experimental and advanced way of extending Imbo, and requires
extensive knowledge of how Imbo works internally. This feature can potentially be removed in future releases, so
only use this for testing purposes.

If you need to create a custom route you can attach a route and a custom resource class using the configuration. Two
keys exists for this purpose: resources and routes:

34 Chapter 1. Installation guide

Imbo, Release 2.2.3

<?php
return [

// ...

'resources' => [
'users' => new ImboUsers();

// or

'users' => function() {
return new ImboUsers();

},

// or

'users' => 'ImboUsers',
],

'routes' => [
'users' => '#^/users(\.(?<extension>json|xml))?$#',

],

// ...
];

In the above example we are creating a route for Imbo using a regular expression, called users. The route itself will
match the following three requests:

• /users

• /users.json

• /users.xml

When a request is made against any of these endpoints Imbo will try to access a resource that is specified with the
same key (users). The value specified for this entry in the resources array can be:

1. a string representing the name of the resource class

2. an instance of a resource class

3. an anonymous function that, when executed, returns an instance of a resource class

The resource class must implement the Imbo\Resource\ResourceInterface interface to be able to response
to a request.

Below is an example implementation of the ImboUsers resource used in the above configuration:

<?php
use Imbo\Resource\ResourceInterface,

Imbo\EventManager\EventInterface,
Imbo\Model\ListModel;

class ImboUsers implements ResourceInterface {
public function getAllowedMethods() {

return ['GET'];
}

public static function getSubscribedEvents() {
return [

(continues on next page)

1.4. Configuration 35

Imbo, Release 2.2.3

(continued from previous page)

'users.get' => 'get',
];

}

public function get(EventInterface $event) {
$model = new ListModel();
$model->setList('users', 'user', array_keys($event->getConfig()['auth']));
$event->getResponse()->setModel($model);

}
}

This resource informs Imbo that it supports HTTP GET, and specifies a callback for the users.get event. The
name of the event is the name specified for the resource in the configuration above, along with the HTTP method,
separated with a dot.

In the get() method we are simply creating a list model for Imbo’s response formatter, and we are supplying the
keys from the auth part of your configuration file as data. When formatted as JSON the response looks like this:

{
"users": [
"someuser",
"someotheruser"

]
}

and the XML representation looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<imbo>

<users>
<user>someuser</user>
<user>someotheruser</user>

</users>
</imbo>

Feel free to experiment with this feature. If you end up creating a resource that you think should be a part of Imbo,
send a pull request on GitHub.

1.5 Customize your Imbo installation with event listeners

Imbo ships with a collection of event listeners for you to use. Some of them are enabled in the default configuration
file. Image transformations are also technically event listeners, but will not be covered in this chapter. Read the
Transforming images on the fly chapter for more information regarding the image transformations.

• Access token

• Authenticate

• Auto rotate image

• CORS (Cross-Origin Resource Sharing)

• EXIF metadata

• Image transformation cache

36 Chapter 1. Installation guide

https://github.com/imbo/imbo

Imbo, Release 2.2.3

• Image variations

• Imagick

• Max image size

• Metadata cache

• Stats access

• Varnish HashTwo

1.5.1 Access token

This event listener enforces the usage of access tokens on all read requests against user-specific resources. You can
read more about how the actual access tokens work in the Access tokens part of the Imbo’s API chapter.

To enforce the access token check this event listener subscribes to the following events:

• user.get

• user.head

• images.get

• images.head

• image.get

• image.head

• metadata.get

• metadata.head

This event listener has a single parameter that can be used to whitelist and/or blacklist certain image transforma-
tions, used when the current request is against an image resource. The parameter is an array with a single key:
transformations. This is another array with two keys: whitelist and blacklist. These two values are
arrays where you specify which transformation(s) to whitelist or blacklist. The names of the transformations are
the same as the ones used in the request. See Transforming images on the fly for a complete list of the supported
transformations.

Use whitelist if you want the listener to skip the access token check for certain transformations, and blacklist
if you want it to only check certain transformations:

[
'transformations' => [

'whitelist' => [
'border',

],
],

]

means that the access token will not be enforced for the border transformation.

[
'transformations' => [

'blacklist' => [
'border',

],

(continues on next page)

1.5. Customize your Imbo installation with event listeners 37

Imbo, Release 2.2.3

(continued from previous page)

],
]

means that the access token will be enforced only for the border transformation.

If both whitelist and blacklist are specified all transformations will require an access token unless it’s in-
cluded in whitelist.

This event listener is included in the default configuration file without specifying any transformation filters:

<?php
return [

// ...

'eventListeners' => [
'accessToken' => 'Imbo\EventListener\AccessToken',

],

// ...
];

Disable this event listener with care. Installations with no access token check is open for DoS attacks.

1.5.2 Authenticate

This event listener enforces the usage of signatures on all write requests against user-specific resources. You can read
more about how the actual signature check works in the Signing write requests section in the Imbo’s API chapter.

To enforce the signature check for all write requests supported by Imbo this event listener subscribes to the following
events:

• images.post

• image.delete

• metadata.put

• metadata.post

• metadata.delete

This event listener does not support any parameters and is enabled per default like this:

<?php
return [

// ...

'eventListeners' => [
'auth' => 'Imbo\EventListener\Authenticate',

],

// ...
];

Disable this event listener with care. User agents can delete all your images and metadata if this listener is disabled.

38 Chapter 1. Installation guide

http://en.wikipedia.org/wiki/Denial-of-service_attack

Imbo, Release 2.2.3

1.5.3 Auto rotate image

This event listener will auto rotate new images based on metadata embedded in the image itself (EXIF).

The listener does not support any parameters and can be enabled like this:

<?php
return [

// ...

'eventListeners' => [
'autoRotateListener' => 'Imbo\EventListener\AutoRotateImage',

],

// ...
];

If you enable this listener all new images added to Imbo will be auto rotated based on the EXIF data. This might also
cause the image identifier sent in the response to be different from the one used in the URI when storing the image.
This can happen with all event listeners which can possibly modify the image before storing it.

1.5.4 CORS (Cross-Origin Resource Sharing)

This event listener can be used to allow clients such as web browsers to use Imbo when the client is located on a
different origin/domain than the Imbo server is. This is implemented by sending a set of CORS-headers on specific
requests, if the origin of the request matches a configured domain.

The event listener can be configured on a per-resource and per-method basis, and will therefore listen to any related
events. If enabled without any specific configuration, the listener will allow and respond to the GET, HEAD and
OPTIONS methods on all resources. Note however that no origins are allowed by default and that a client will still
need to provide a valid access token, unless the Access token listener is disabled.

Here is an example on how to enable the CORS listener:

<?php
return [

// ...

'eventListeners' => [
'cors' => [

'listener' => 'Imbo\EventListener\Cors',
'params' => [

'allowedOrigins' => ['http://some.origin'],
'allowedMethods' => [

'image' => ['GET', 'HEAD'],
'images' => ['GET', 'HEAD', 'POST'],

],
'maxAge' => 3600,

],
],

],

// ...
];

Below all supported parameters are listed:

allowedOrigins is an array of allowed origins. Specifying * as a value in the array will allow any origin.

1.5. Customize your Imbo installation with event listeners 39

http://en.wikipedia.org/wiki/Exchangeable_image_file_format
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Imbo, Release 2.2.3

allowedMethods is an associative array where the keys represent the resource (shorturl, status, stats,
user, images, image and metadata) and the values are arrays of HTTP methods you wish to open up.

maxAge specifies how long the response of an OPTIONS-request can be cached for, in seconds. Defaults to 3600
(one hour).

1.5.5 EXIF metadata

This event listener can be used to fetch the EXIF-tags from uploaded images and adding them as metadata. Enabling
this event listener will not populate metadata for images already added to Imbo.

The event listener subscribes to the following events:

• images.post

• db.image.insert

and the parameters given to the event listener supports a single element:

allowedTags The tags you want to be populated as metadata. Defaults to exif:*. When specified it will override
the default value, so if you want to register all exif and date tags for example, you will need to specify them
both.

and is enabled like this:

<?php
return [

// ...

'eventListeners' => [
'exifMetadata' => [

'listener' => 'Imbo\EventListener\ExifMetadata',
'params' => [

'allowedTags' => ['exif:*', 'date:*', 'png:gAMA'],
],

],
],

// ...
];

which would allow all exif and date properties as well as the png:gAMA property. If you want to store all tags as
metadata, use ['*'] as filter.

1.5.6 Image transformation cache

This event listener enables caching of image transformations. Read more about image transformations in the Trans-
forming images on the fly section.

To achieve this the listener subscribes to the following events:

• image.get

• response.send

• image.delete

The parameters for the event listener supports a single element:

path Root path where the cached images will be stored.

40 Chapter 1. Installation guide

Imbo, Release 2.2.3

and is enabled like this:

<?php
return [

// ...

'eventListeners' => [
'imageTransformationCache' => [

'listener' => 'Imbo\EventListener\ImageTransformationCache',
'params' => [

'path' => '/path/to/cache',
],

],
],

// ...
];

Note: This event listener uses a similar algorithm when generating file names as the Filesystem storage adapter.

Warning: It can be wise to purge old files from the cache from time to time. If you have a large amount of images
and present many different variations of these the cache will use up quite a lot of storage.

An example on how to accomplish this:

$ find /path/to/cache -ctime +7 -type f -delete

The above command will delete all files in /path/to/cache older than 7 days and can be used with for instance
crontab.

1.5.7 Image variations

This event listener can be used to generate multiple variations of incoming images so that a more suitable size can be
used when performing scaling transformations. This will increase the amount of data stored by Imbo, but it will also
improve performance. In cases where the original images are very large and the requested transformed images are
significantly smaller, the difference will be quite drastic.

The event listener has two roles, one is to generate the variations when new images are added, and the other is to pick
the most fitting image variation when clients request an image with a set of transformations applied that will alter the
dimensions of the image, for instance resize or thumbnail.

Imbo ships with MongoDB and Doctrine adapters for storing metadata about these
variations. If you want to use a different database, you can implement the
Imbo\EventListener\ImageVariations\Database\DatabaseInterface interface and set the
name of the class in the configuration of the event listener.

In the same way, Imbo ships three different adapters for storing the actual image variation data (the downscaled
images): GridFS, Doctrine (deprecated) and Filesystem. See examples of their configuration below.

The event listener supports for following configuration parameters:

(boolean) lossless Have Imbo use a lossless format to store the image variations. This results in better quality
images, but converting between formats can be slower and will use more disk space. Defaults to false.

(boolean) autoScale Have Imbo automatically figure out the widths of the image variations (based on other
parameters). Defaults to true.

1.5. Customize your Imbo installation with event listeners 41

http://en.wikipedia.org/wiki/Cron

Imbo, Release 2.2.3

(float) scaleFactor The factor to use when scaling. Defaults to 0.5 which basically generates variants half
the size of the previous one.

(int) minDiff When the difference of the width in pixels between two image variations fall below this limit, no
more variants will be generated. Defaults to 100.

(int) minWidth Do not generate image variations that ends up with a width in pixels below this level. Defaults
to 100.

(int) maxWidth Don’t start to generate image variations before the width of the variation falls below this limit.
Defaults to 1024.

(array) widths An array of widths to use when generating variations. This can be used together with the auto
generation, and will ignore the rules related to auto generation. If you often request images with the same
dimensions, you can significantly speed up the process by specifying the width here. Defaults to [].

(array) database The database adapter to use. This array has two elements:

• (string) adapter: The class name of the adapter. The class must implement the
Imbo\EventListener\ImageVariations\Database\DatabaseInterface interface.

• (array) params: Parameters for the adapter (optional).

(array) storage The storage adapter to use. This array has two elements:

• (string) adapter: The class name of the adapter. The class must implement the
Imbo\EventListener\ImageVariations\Storage\StorageInterface interface.

• (array) params: Parameters for the adapter (optional).

Examples:

1. Automatically generate image variations

Given the following configuration:

return [
// ...

'eventListeners' => [
'imageVariations' => [

'listener' => 'Imbo\EventListener\ImageVariations',
'params' => [

'database' => [
'adapter' =>

→˓'Imbo\EventListener\ImageVariations\Database\MongoDB',
],
'storage' => [

'adapter' =>
→˓'Imbo\EventListener\ImageVariations\Storage\GridFS',

],
],

],
],

// ...
];

when adding an image with dimensions 3082 x 2259, the following variations will be generated:

• 770 x 564

• 385 x 282

42 Chapter 1. Installation guide

Imbo, Release 2.2.3

• 192 x 140

When later requesting this image with for instance ?t[]=resize:width=500 as transformation (read more
about image transformations in the Transforming images on the fly chapter), Imbo will choose the image which
is 770 x 564 pixels and downscale it to 500 pixels in width.

2. Specify image widths:

Given the following configuration:

return [
// ...

'eventListeners' => [
'imageVariations' => [

'listener' => 'Imbo\EventListener\ImageVariations',
'params' => [

'database' => [
'adapter' =>

→˓'Imbo\EventListener\ImageVariations\Database\MongoDB',
],
'storage' => [

'adapter' =>
→˓'Imbo\EventListener\ImageVariations\Storage\GridFS',

],
'autoScale' => false,
'widths' => [1000, 500, 200, 100, 50],

],
],

],

// ...
];

when adding an image with dimensions 3082 x 2259, the following variations will be generated:

• 1000 x 732

• 500 x 366

• 200 x 146

• 100 x 73

• 50 x 36

As you can see the minDiff and minWidth parameters are ignored when using the width parameter.

3. Configuring database and storage adapters:

As stated earlier, there are several different adapters to choose from when storing the variations metadata as well
as the actual variation image files.

The default adapter for the metadata database is MongoDB, and the default storage adapter is GridFS. They
have the same configuration parameters:

return [
// ...

'eventListeners' => [
'imageVariations' => [

'listener' => 'Imbo\EventListener\ImageVariations',

(continues on next page)

1.5. Customize your Imbo installation with event listeners 43

Imbo, Release 2.2.3

(continued from previous page)

'params' => [
'database' => [

'adapter' =>
→˓'Imbo\EventListener\ImageVariations\Database\MongoDB',

'params' => [
'databaseName' => 'imbo',
'server' => 'mongodb://localhost:27017',
'options' => ['connect' => true, 'connectTimeoutMS' =>

→˓1000],
]

],
'storage' => [

'adapter' =>
→˓'Imbo\EventListener\ImageVariations\Storage\GridFS',

'params' => [
'databaseName' => 'imbo_storage',
'server' => 'mongodb://localhost:27017',
'options' => ['connect' => true, 'connectTimeoutMS' =>

→˓1000],
]

],
],

],
],

// ...
];

The Doctrine adapter is an alternative for storing both metadata and variation data. This adapter uses the Doc-
trine Database Abstraction Layer. When using this adapter you need to create the required tables in the RDBMS
first, as specified in the Database setup section. Example usage:

return [
// ...

'eventListeners' => [
'imageVariations' => [

'listener' => 'Imbo\EventListener\ImageVariations',
'params' => [

'database' => [
'adapter' =>

→˓'Imbo\EventListener\ImageVariations\Database\Doctrine',
'params' => [

'dbname' => 'imbo',
'user' => 'imbo_rw',
'password' => 'imbo_password',
'host' => 'localhost',
'driver' => 'pdo_mysql',
'tableName' => 'imagevariations', // Default value, can

→˓be omitted
]

],
'storage' => [

'adapter' =>
→˓'Imbo\EventListener\ImageVariations\Storage\Doctrine',

'params' => [] // Same as above

(continues on next page)

44 Chapter 1. Installation guide

http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/dbal.html

Imbo, Release 2.2.3

(continued from previous page)

],
],

],
],

// ...
];

Warning: Connecting to a database by specifying a PDO instance in the pdo element of the configuration
array is deprecated as of Imbo v2.3, and will be removed in Imbo v3.

Warning: The Doctrine-based storage adapter is deprecated as of Imbo v2.3, and will be removed in Imbo
v3.

The third option for the storage adapter is the Filesystem adapter. It’s fairly straightforward and uses a similar
algorithm when generating file names as the Filesystem storage adapter. Example usage:

return [
// ...

'eventListeners' => [
'imageVariations' => [

'listener' => 'Imbo\EventListener\ImageVariations',
'params' => [

'storage' => [
'adapter' =>

→˓'Imbo\EventListener\ImageVariations\Storage\Filesystem',
'params' => [

'dataDir' => '/path/to/image-variation-storage'
]

],

// Use any database adapter you want
'database' => [

'adapter' =>
→˓'Imbo\EventListener\ImageVariations\Database\Doctrine',

],
],

],
],

// ...
];

Note: When using the Filesystem adapter, the dataDir must be specified, and must be writable by the web
server.

1.5. Customize your Imbo installation with event listeners 45

Imbo, Release 2.2.3

1.5.8 Imagick

This event listener is required by the image transformations that is included in Imbo, and there is no configuration
options for it. Unless you plan on exchanging all the internal image transformations with your own (for instance
implemented using Gmagick or GD) you are better off leaving this as-is.

1.5.9 Max image size

This event listener can be used to enforce a maximum size (height and width, not byte size) of new images. Enabling
this event listener will not change images already added to Imbo.

The event listener subscribes to the following event:

• images.post

and the parameters includes the following elements:

width The max width in pixels of new images. If a new image exceeds this limit it will be downsized.

height The max height in pixels of new images. If a new image exceeds this limit it will be downsized.

and is enabled like this:

<?php
return [

// ...

'eventListeners' => [
'maxImageSizeListener' => [

'listener' => 'Imbo\EventListener\MaxImageSize',
'params' => [

'width' => 1024,
'height' => 768,

],
],

],

// ...
];

which would effectively downsize all images exceeding a width of 1024 or a height of 768. The aspect ratio will
be kept.

1.5.10 Metadata cache

This event listener enables caching of metadata fetched from the backend so other requests won’t need to go all the
way to the metadata backend to fetch it. To achieve this the listener subscribes to the following events:

• db.metadata.load

• db.metadata.delete

• db.metadata.update

• db.image.delete

and the parameters supports a single element:

46 Chapter 1. Installation guide

Imbo, Release 2.2.3

cache An instance of a cache adapter. Imbo ships with APC and Memcached adapters, and both can be
used for this event listener. If you want to use another form of caching you can simply implement the
Imbo\Cache\CacheInterface interface and pass an instance of the custom adapter to the constructor
of the event listener. See the Implement a custom cache adapter section for more information regarding this.
Here is an example that uses the APC adapter for caching:

<?php
return [

// ...

'eventListeners' => [
'metadataCache' => [

'listener' => 'Imbo\EventListener\MetadataCache',
'params' => [

'cache' => new Imbo\Cache\APC('imbo'),
],

],
],

// ...
];

1.5.11 Stats access

This event listener controls the access to the stats resource by using white listing of IPv4 and/or IPv6 addresses.
CIDR-notations are also supported.

This listener is enabled per default, and only allows 127.0.0.1 and ::1 to access the statistics:

<?php
return [

// ...

'eventListeners' => [
'statsAccess' => [

'listener' => 'Imbo\EventListener\StatsAccess',
'params' => [

'allow' => ['127.0.0.1', '::1'],
],

],
],

// ...
];

The event listener also supports a notation for “allowing all”, simply by placing '*' somewhere in the list:

<?php
return [

// ...

'eventListeners' => [
'statsAccess' => [

'listener' => 'Imbo\EventListener\StatsAccess',
'params' => [

[

(continues on next page)

1.5. Customize your Imbo installation with event listeners 47

http://en.wikipedia.org/wiki/CIDR#CIDR_notation

Imbo, Release 2.2.3

(continued from previous page)

'allow' => ['*'],
]

],
],

],

// ...
];

The above example will allow all clients access to the statistics.

1.5.12 Varnish HashTwo

This event listener can be enabled if you want Imbo to include HashTwo headers in responses to image requests. These
headers can be used by Varnish for more effective cache invalidation strategies. The listener, when enabled, subscribes
to the following events:

• image.get

• image.head

The parameters supports a single element:

headerName Set the header name to use. Defaults to X-HashTwo.

<?php
return [

// ...

'eventListeners' => [
'hashTwo' => 'Imbo\EventListener\VarnishHashTwo',

],

// ...
];

or, if you want to use a non-default header name:

<?php
return [

// ...

'eventListeners' => [
'hashTwo' => [

'listener' => 'Imbo\EventListener\VarnishHashTwo',
'params' => [

'headerName' => 'X-Custom-HashTwo-Header-Name',
],

],
],

// ...
];

The header appears multiple times in the response, with slightly different values:

48 Chapter 1. Installation guide

https://www.varnish-software.com/blog/advanced-cache-invalidation-strategies
https://www.varnish-software.com/

Imbo, Release 2.2.3

X-HashTwo: imbo;image;<publicKey>;<imageIdentifier>
X-HashTwo: imbo;user;<publicKey>

1.6 Command line tool

Imbo ships with a command line tool which can aid you when setting up Imbo and keeping it up to date. This chapter
lists all available commands and what they are capable of.

The binary can be found in one of two places, depending on the Installation method you chose. If you installed Imbo
via Composer, the binary can be found in vendor/bin/imbo, and if you used git clone as the installation method
it can be found in bin/imbo.

• Add a public key - add-public-key

• Generate a private key - generate-private-key

• Help - help

• List commands - list

1.6.1 Add a public key - add-public-key

When using a mutable access control adapter (usually meaning it’s backed by a database or similar), this command
helps you with adding public/private key pairs and associated rules. It’s an alternative to using Imbo’s public REST
API for this purpose, and is the only way to add an initial public key with access to create and modify other public
keys.

Example:

./bin/imbo add-public-key somePublicKey

The above command will start an interactive session that will guide you through creating a public key with the name
somePublicKey, given it does not already exist.

1.6.2 Generate a private key - generate-private-key

The script that was earlier called scripts/generatePrivateKey.php is now included in the CLI tool. This
commands does not support any arguments.

Example:

./bin/imbo generate-private-key

The above command will simply output a secret key that can be used as a private key for an Imbo user.

1.6.3 Help - help

Use this command to get a detailed description of another command along with available arguments and their effect
on the command.

Example:

1.6. Command line tool 49

Imbo, Release 2.2.3

./bin/imbo help generate-private-key

The above command will provide a description of the generate-private-key command.

1.6.4 List commands - list

This command can be used to simply list all commands along with their short description. This is the default command
that is executed when running ./bin/imbo with no arguments.

50 Chapter 1. Installation guide

CHAPTER 2

End user guide

2.1 Imbo’s API

In this chapter you will learn more about how Imbo’s API works, and how you as a user are able to read from and write
to Imbo. Most examples listed in this chapter will use cURL, so while playing around with the API it’s encouraged to
have cURL easily available. For the sake of simplicity the access tokens and authentication information is not used in
the examples. See the Access tokens and Signing write requests sections for more information regarding this.

2.1.1 Resources/endpoints

In this section you will find information on the different resources Imbo’s RESTful API expose, along with their
capabilities:

Available resources

• Index resource - /

• Stats resource - /stats

• Status resource - /status

• Global short URL resource - /s/<id>

• User resource - /users/<user>

• Images resource - /users/<user>/images

• Image resource - /users/<user>/images/<image>

• Short URLs resource - /users/<user>/images/<image>/shorturls

• Short URL resource - /users/<user>/images/<image>/shorturls/<id>

• Metadata resource - /users/<user>/images/<image>/metadata

51

http://curl.haxx.se/

Imbo, Release 2.2.3

• Global images resource - /images

• Public key resource - /keys/<publicKey>

• Groups resource - /groups

• Group resource - /groups/<groupName>

• Access rules resource - /keys/<publicKey>/access

• Access rule resource - /keys/<publicKey>/access/<ruleId>

Index resource - /

The index resource shows the version of the Imbo installation along with some external URLs for Imbo-related infor-
mation, and some internal URLs for the available endpoints.

curl -H"Accept: application/json" http://imbo

results in:

{
"version": "dev",
"urls": {
"site": "http://www.imbo-project.org",
"source": "https://github.com/imbo/imbo",
"issues": "https://github.com/imbo/imbo/issues",
"docs": "http://docs.imbo-project.org"

},
"endpoints": {
"status": "http://imbo/status",
"stats": "http://imbo/stats",
"user": "http://imbo/users/{user}",
"images": "http://imbo/users/{user}/images",
"image": "http://imbo/users/{user}/images/{imageIdentifier}",
"globalShortImageUrl": "http://imbo/s/{id}",
"metadata": "http://imbo/users/{user}/images/{imageIdentifier}/metadata",
"shortImageUrls": "http://imbo/users/{user}/images/{imageIdentifier}/shorturls",
"shortImageUrl": "http://imbo/users/{user}/images/{imageIdentifier}/shorturls/{id}

→˓"
}

}

This resource does not support any extensions in the URI, so you will need to use the Accept header to fetch different
representations of the data.

The index resource does not require any authentication per default.

Typical response codes:

• 200 Hell Yeah

Note: The index resource is not cache-able.

52 Chapter 2. End user guide

Imbo, Release 2.2.3

Stats resource - /stats

Imbo provides an endpoint for fetching simple statistics about the data stored in Imbo.

curl http://imbo/stats.json

results in:

{
"numImages": 12,
"numUsers": 2,
"numBytes": 3898294
"custom": {}

}

if the client making the request is allowed access.

Access control

The access control for the stats endpoint is controlled by an event listener, which is enabled per default, and only
allows connections from 127.0.0.1 (IPv4) and ::1 (IPv6). Read more about how to configure this event listener
in the Stats access event listener section.

Custom statistics

The stats resource enables users to attach custom statistics via event listeners by using the data model as a regular
associative array. The following example attaches a simple event listener in the configuration file that populates some
custom data in the statistics model:

<?php
return [

// ...

'eventListeners' => [
'customStats' => [

'events' => ['stats.get'],
'callback' => function($event) {

// Fetch the model from the response
$model = $event->getResponse()->getModel();

// Set some values
$model['someValue'] = 123;
$model['someOtherValue'] = [

'foo' => 'bar',
];
$model['someList'] = [1, 2, 3];

}
],

],

// ...
];

When requesting the stats endpoint, the output will look like this:

2.1. Imbo’s API 53

Imbo, Release 2.2.3

{
"users": {
"someuser": {

"numImages": 11,
"numBytes": 3817197

},
"someotheruser": {

"numImages": 1,
"numBytes": 81097

}
},
"total": {
"numImages": 12,
"numUsers": 2,
"numBytes": 3898294

},
"custom": {
"someValue": 123,
"someOtherValue": {

"foo": "bar"
},
"someList": [1, 2, 3]

}
}

Use cases for this might be to simply store data in some backend in various events (for instance image.get or
metadata.get) and then fetch these and display then when requesting the stats endpoint (stats.get).

Note: The stats resource is not cache-able.

Status resource - /status

Imbo includes a simple status resource that can be used with for instance monitoring software.

curl http://imbo/status.json

results in:

{
"timestamp": "Tue, 24 Apr 2012 14:12:58 GMT",
"database": true,
"storage": true

}

where timestamp is the current timestamp on the server, and database and storage are boolean values inform-
ing of the status of the current database and storage adapters respectively. If both are true the HTTP status code is
200 OK, and if one or both are false the status code is 503. When the status code is 503 the reason phrase will
inform you whether it’s the database or the storage adapter (or both) that is having issues. As soon as the status code
does not equal 200 Imbo will no longer work as expected.

The reason for adapter failures depends on what kind of adapter you are using. The file system storage adapter will
for instance return a failure if it can no longer write to the storage directory. The MongoDB and Doctrine database
adapters will fail if they can no longer connect to the server they are configured to communicate with.

Typical response codes:

54 Chapter 2. End user guide

Imbo, Release 2.2.3

• 200 OK

• 503 Database error

• 503 Storage error

• 503 Storage and database error

Note: The status resource is not cache-able.

Global short URL resource - /s/<id>

Images in Imbo can have short URLs associated with them, which are generated on demand when interacting with the
short URLs resource. These URLs can be used in place of the rather long original URLs which includes both access
tokens and transformations.

The format of the random ID part of the short URL can be matched with the following regular expression:

/^[a-zA-Z0-9]{7}$/

There are some caveats regarding the short URLs:

1. If the data used to generate the short URL contained an image extension, content negotiation will not be applied
to the short URL. You will always get the mime type associated with the extension used to generate the short
URL.

2. If the data used to generate the short URL did not contain an image extension you can use the Accept header
to decide the mime type of the generated image when requesting the short URL.

3. Short URLs do not support extensions, so you can not append .jpg to force image/jpeg. If you need to
make sure the image is always a JPEG, simply add jpg as an extension when generating the short URL.

You can read more about how to generate these URLs in the short URLs section.

Note: In Imbo only images have short URLs

User resource - /users/<user>

The user resource represents a single user on the current Imbo installation. The output contains basic user information:

curl http://imbo/users/<user>.json

results in:

{
"user": "<user>",
"numImages": 42,
"lastModified": "Wed, 18 Apr 2012 15:12:52 GMT"

}

where user is the user (the same used in the URI of the request), numImages is the number of images the user has
stored in Imbo and lastModified is when the user last uploaded or deleted an image, or when the user last updated
metadata of an image. If the user has not added any images yet, the lastModified value will be set to the current
time on the server.

2.1. Imbo’s API 55

http://en.wikipedia.org/wiki/Regular_expression

Imbo, Release 2.2.3

Typical response codes:

• 200 OK

• 304 Not modified

• 404 User not found

Images resource - /users/<user>/images

The images resource is the collection of images owned by a specific user. This resource can be used to search added
images, and is also used to add new images to a collection.

Add an image

To be able to display images stored in Imbo you will first need to add one or more images. This is done by requesting
this endpoint with an image attached to the request body, and changing the HTTP METHOD to POST. The body of
the response for such a request contains a JSON object containing the image identifier of the added image:

curl -XPOST http://imbo/users/<user>/images --data-binary @<file to add>

results in:

{
"imageIdentifier": "<imageIdentifier>",
"width": <width>,
"height": <height>,
"extension": "<extension>"

}

The <imageIdentifier> in the response is the identifier of the added image. This is used with the image re-
source<>. The response body also contains the width, height and extension of the image that was just added.

Typical response codes:

• 200 OK

• 201 Created

• 400 Bad request

Get image collections

The images resource can also be used to gather information on which images a user owns. This is done by requesting
this resource using HTTP GET. Supported query parameters are:

page The page number. Defaults to 1.

limit Number of images per page. Defaults to 20.

metadata Whether or not to include metadata in the output. Defaults to 0, set to 1 to enable.

from Fetch images starting from this Unix timestamp.

to Fetch images up until this timestamp.

fields[] An array with fields to display. When not specified all fields will be displayed.

56 Chapter 2. End user guide

http://en.wikipedia.org/wiki/Unix_timestamp

Imbo, Release 2.2.3

sort[] An array with fields to sort by. The direction of the sort is specified by appending asc or
desc to the field, delimited by :. If no direction is specified asc will be used. Example: ?
sort[]=size&sort[]=width:desc is the same as ?sort[]=size:asc&sort[]=width:desc.
If no sort is specified Imbo will sort by the date the images was added, in a descending fashion.

ids[] An array of image identifiers to filter the results by.

checksums[] An array of image checksums to filter the results by.

originalChecksums[] An array of the original image checksums to filter the results by.

curl "http://imbo/users/<user>/images.json?limit=1&metadata=1"

results in:

{
"search": {
"hits": 3,
"page": 1,
"limit": 1,
"count": 1

},
"images": [
{

"added": "Mon, 10 Dec 2012 11:57:51 GMT",
"updated": "Mon, 10 Dec 2012 11:57:51 GMT",
"checksum": "<checksum>",
"originalChecksum": "<originalChecksum>",
"extension": "png",
"size": 6791,
"width": 1306,
"height": 77,
"mime": "image/png",
"imageIdentifier": "<image>",
"user": "<user>",
"metadata": {

"key": "value",
"foo": "bar"

}
}

]
}

The search object is data related to pagination, where hits is the number of images found by the query, page is
the current page, limit is the current limit, and count is the number of images in the visible collection.

The images list contains image objects. Each object has the following fields:

• added: A formatted date of when the image was added to Imbo.

• updated: The formatted date of when the image was last updated (read: when metadata attached to the image
was last updated, as the image itself never changes).

• checksum: The MD5 checksum of the image blob stored in Imbo.

• originalChecksum: The MD5 checksum of the original image. Might differ from <checksum> if event
listeners that might change incoming images have been enabled. This field was added to Imbo in version 1.2.
0. If this field is null when you query the images resource, you will need to manually update the database. If
you have event listeners changing incoming images you might not want to simply set the original checksum to
<checksum> as that might not be true.

2.1. Imbo’s API 57

Imbo, Release 2.2.3

• extension: The original image extension.

• size: The size of the image in bytes.

• width: The width of the image in pixels.

• height: The height of the image in pixels.

• mime: The mime type of the image.

• imageIdentifier: The image identifier stored in Imbo.

• user: The user who owns the image.

• metadata: A JSON object containing metadata attached to the image. This field is only available if the
metadata query parameter described above is used.

Typical response codes:

• 200 OK

• 304 Not modified

• 404 User not found

Image resource - /users/<user>/images/<image>

The image resource represents specific images owned by a user. This resource is used to retrieve and remove images.
It’s also responsible for transforming the images based on the transformation parameters in the query.

Fetch images

Fetching images added to Imbo is done by requesting the image identifiers of the images.

curl http://imbo/users/<user>/images/<image>

results in:

<binary data of the original image>

When fetching images Imbo also sends a set of custom HTTP response headers related to the image:

X-Imbo-Originalextension: png
X-Imbo-Originalmimetype: image/png
X-Imbo-Originalfilesize: 45826
X-Imbo-Originalheight: 390
X-Imbo-Originalwidth: 380

These are all related to the image that was just requested.

How to use this resource to generate image transformations is described in the Transforming images on the fly chapter.

Typical response codes:

• 200 OK

• 304 Not modified

• 400 Bad request

• 404 Image not found

58 Chapter 2. End user guide

Imbo, Release 2.2.3

Delete images

Deleting images from Imbo is accomplished by requesting the image URIs using HTTP DELETE. All metadata at-
tached to the image will be removed as well.

curl -XDELETE http://imbo/users/<user>/images/<image>

results in:

{
"imageIdentifier": "<image>"

}

where <image> is the image identifier of the image that was just deleted (the same as the one used in the URI).

Typical response codes:

• 200 OK

• 400 Bad request

• 404 Image not found

Short URLs resource - /users/<user>/images/<image>/shorturls

This resource is used to create short URLs for images on demand, as well as removing all short URLs associated with
a single image.

Create a short URL

Creating a short URL is done by requesting this resource using HTTP POST while including some parameters for
the short URL in the request body. The parameters must be specified as a JSON object, and the object supports the
following fields:

• imageIdentfier: The same image identifier as the one in the requested URI.

• user: The same user as the one in the requested URI.

• extension: An optional extension to the image, for instance jpg or png.

• query: The query string with transformations that will be applied. The format is the same as when requesting
the image resource with one or more transformations. See the Transforming images on the fly chapter for more
information regarding the transformation of images.

The generated ID of the short URL can be found in the response:

curl -XPOST http://imbo/users/<user>/images/<image>/shorturls.json -d '{
"imageIdentifier": "<image>",
"user": "<user>",
"extension": "jpg",
"query": "t[]=thumbnail:width=75,height=75&t[]=desaturate"

}'

results in:

{
"id": "<id>"

}

2.1. Imbo’s API 59

Imbo, Release 2.2.3

where <id> can be used with the global short URL resource for requesting the image with the configured extension /
transformations applied.

Delete all short URLs associated with an image

If you want to remove all short URLs associated with an image, you can request this resource using HTTP DELETE:

curl -XDELETE http://imbo/users/<user>/images/<image>/shorturls.json

results in:

{
"imageIdentifier": "<image>"

}

Short URL resource - /users/<user>/images/<image>/shorturls/<id>

This resource can be used to remove a single short URL for a specific image variation.

This is achieved by simply requesting the resource with HTTP DELETE, specifying the ID of the short URL in the
URI:

curl -XDELETE http://imbo/users/<user>/images/<image>/shorturls/<id>

results in:

{
"id": "<id>"

}

Metadata resource - /users/<user>/images/<image>/metadata

Imbo can also be used to attach metadata to the stored images. The metadata is based on a simple key => value
model, for instance:

• category: Music

• band: Koldbrann

• genre: Black metal

• country: Norway

Values can be nested key => value pairs.

Adding/replacing metadata

To add (or replace all existing metadata) on an image a client should make a request against this resource using HTTP
PUT with the metadata attached in the request body as a JSON object. The response body will contain the added
metadata.

60 Chapter 2. End user guide

Imbo, Release 2.2.3

curl -XPUT http://imbo/users/<user>/images/<image>/metadata.json -d '{
"beer":"Dark Horizon First Edition",
"brewery":"Nøgne Ø",
"style":"Imperial Stout"

}'

results in:

{
"beer": "Dark Horizon First Edition",
"brewery": "Nøgne Ø",
"style": "Imperial Stout"

}

Note: When using the Doctrine database adapter, metadata keys can not contain ::.

Typical response codes:

• 200 OK

• 400 Bad request

• 400 Invalid metadata (when using the Doctrine adapter, and keys contain ::)

• 404 Image not found

Partially updating metadata

Partial updates to metadata attached to an image is done by making a request with HTTP POST and attaching metadata
to the request body as a JSON object. If the object contains keys that already exists in the metadata on the server the
old values will be replaced by the ones found in the request body. New keys will be added to the metadata. The
response will contain all metadata attached to the image after the update.

curl -XPOST http://imbo/users/<user>/images/<image>/metadata.json -d '{
"ABV":"16%",
"score":"100/100"

}'

results in:

{
"beer": "Dark Horizon First Edition",
"brewery": "Nøgne Ø",
"style": "Imperial Stout",
"ABV":"16%",
"score":"100/100"

}

if the image already included the first three keys as metadata.

Note: When using the Doctrine database adapter, metadata keys can not contain ::.

Typical response codes:

• 200 OK

2.1. Imbo’s API 61

Imbo, Release 2.2.3

• 400 Bad request

• 400 Invalid metadata (when using the Doctrine adapter, and keys contain ::)

• 404 Image not found

Fetch metadata

Requests using HTTP GET on this resource returns all metadata attached to an image.

curl http://imbo/users/<user>/images/<image>/metadata.json

results in:

{}

when there is no metadata stored, or for example

{
"category": "Music",
"band": "Koldbrann",
"genre": "Black metal",
"country": "Norway"

}

if the image has metadata attached to it.

Typical response codes:

• 200 OK

• 304 Not modified

• 404 Image not found

Remove metadata

To remove metadata attached to an image a request using HTTP DELETE can be made.

curl -XDELETE http://imbo/users/<user>/images/<image>/metadata.json

results in:

{}

Typical response codes:

• 200 OK

• 400 Bad request

• 404 Image not found

Global images resource - /images

The global images resource is used to search for images across users, given that the public key has access to the images
of these users.

62 Chapter 2. End user guide

Imbo, Release 2.2.3

This resource is read only, and behaves in the same way as described in the Get image collections section of Images
resource - /users/<user>/images. In addition to the parameters specified for Get image collections, the following
query parameter must be specified:

users[] An array of users to get images for.

curl "http://imbo/images?users[]=foo&users[]=bar"

results in a response with the exact same format as shown under Get image collections.

Public key resource - /keys/<publicKey>

The public key resource provides a way for clients to dynamically add, remove and update public keys to be used
as part of the access control routines. Not all access control adapters implement this functionality - in this case the
configuration is done through configuration files.

A private key does not have any specific requirements, while a public key must match the following regular expression:

/^[a-zA-Z0-9_-]{1,}$/

Add a public key

Every public key must also have a private key, which is used to sign and generate access tokens for requests. This is
the only required parameter in the request body.

curl -XPUT http://imbo/keys/<publicKey>.json -d '{"privateKey":"<privateKey>"}'

Check if a public key exist

A HEAD request can be used if you want to check if a public key exist. The public key used to sign the request must
have access to the keys.head resource.

curl -XHEAD http://imbo/keys/<publicKey>

Typical response codes:

• 200 OK

• 404 Public key not found

Change private key for a public key

Use the same method as when adding a public key to change the private key.

Remove a public key

Public keys can be removed using a DELETE request. The public key used to sign the request must have access to the
keys.delete resource.

curl -XDELETE http://imbo/keys/<publicKey>.json

Typical response codes:

2.1. Imbo’s API 63

http://en.wikipedia.org/wiki/Regular_expression

Imbo, Release 2.2.3

• 200 OK

• 201 Created

• 400 Bad request

• 404 Public key not found

• 405 Access control adapter is immutable

Note: The keys resource is not cache-able.

Groups resource - /groups

The groups resource can list available resource groups, used in the access control routines.

List resource groups

Requests using HTTP GET on this resource returns all available resource groups. Supported query parameters are:

page The page number. Defaults to 1.

limit Number of groups per page. Defaults to 20.

curl http://imbo/groups.json

results in:

{"search":{"hits":0,"page":1,"limit":20,"count":0},"groups":[]}

when there are no resource groups defined, or for example

{
"search": {
"hits": 1,
"page": 1,
"limit": 20,
"count": 1

},
"groups": [
{

"name": "read-stats",
"resources": [

"user.get",
"user.head",
"user.options"

]
}

]
}

if there are resource groups defined.

Typical response codes:

• 200 OK

64 Chapter 2. End user guide

Imbo, Release 2.2.3

Group resource - /groups/<groupName>

The group resource enables adding, modifying and deleting resource groups used in the access control routine. Not
all access control adapters allow modification of groups - in this case the configuration is done through configuration
files, and PUT/DELETE operations will result in an HTTP 405 response.

List resources of a group

Requests using HTTP GET on this resource returns all the resources the group consists of.

curl http://imbo/groups/<group>.json

results in:

{
"resources": [
"user.get",
"user.head",
"user.options"

]
}

Add/modify resources for a group

Requests using HTTP PUT on this resource either adds a new group with the given name, or if it already exists, updates
it. The request body should contain an array of resources the group should consist of.

curl -XPUT http://imbo/groups/<group>.json -d '[
"user.get",
"stats.get"

]'

Delete a resource group

Requests using HTTP DELETE on this resource will remove the entire resource group. Note that any access control
rules that are using this resource group will also be deleted, since they are now invalid.

curl -XDELETE http://imbo/groups/<group>.json

Typical response codes:

• 200 OK

• 201 Created

• 404 Group not found

• 405 Access control adapter is immutable

Access rules resource - /keys/<publicKey>/access

The access rules endpoint allows you to add rules that give a public key access to a specified set of resources. These
rules can also be defined on a per-user basis. Instead of defining a list of resources, you also have the option to specify
a resource group.

2.1. Imbo’s API 65

Imbo, Release 2.2.3

Listing access control rules

Requests using HTTP GET on this resource returns all the access control rules defined for the given public key.

curl http://imbo/keys/<publicKey>/access.json

results in:

[
{
"id": 1,
"resources": ['images.get', 'image.get', 'images.post', 'image.delete'],
"users": [

"user1",
"user2"

]
},
{
"id": 2,
"group": "read-stats",
"users": [

"user1",
"user2"

]
}

]

Adding access control rules

Requests using HTTP POST on this resource adds new rules to the given public key. The request body should contain
an array of rules. The parameters for a rule must be specified as JSON objects, where the object supports the following
fields:

• users: Defines on which users the public key should have access to the defined resources. Either an array of
users or the string * (all users).

• resources: An array of resources you want the public key to have access to.

• group: A resource group the public key should have access to.

Note: A rule must contain either resources or group, not both. users is required.

curl -XPOST http://imbo/keys/<publicKey>/access -d '[{
"resources": ["user.get", "image.get", "images.get", "metadata.get"],
"users": "*"

}]'

Typical response codes:

• 200 OK

• 400 No access rule data provided

• 404 Public key not found

• 405 Access control adapter is immutable

66 Chapter 2. End user guide

Imbo, Release 2.2.3

Access rule resource - /keys/<publicKey>/access/<ruleId>

The access rule endpoint allows you to see which resources and users a given access control rule contains. It also
allows you to remove a specific access control rule.

Get access rule details

curl http://imbo/keys/<publicKey>/access/<ruleId>.json

results in:

{
"id": 1,
"resources": ['images.get', 'image.get', 'images.post', 'image.delete'],
"users": [
"user1",
"user2"

]
}

Removing an access rule

Requests using HTTP DELETE on this resource removes the access control rule, given the access control adapter
supports mutations.

curl -XDELETE http://imbo/keys/<publicKey>/access/<ruleId>

Typical response codes:

• 200 OK

• 404 Public key not found

• 404 Access rule not found

• 405 Access control adapter is immutable

2.1.2 Access tokens

Access tokens are enforced by an event listener that is enabled in the default configuration file. The access tokens are
used to prevent DoS attacks so think twice before you disable the event listener.

An access token, when enforced by the event listener, must be supplied in the URI using the accessToken query
parameter and without it, most GET and HEAD requests will result in a 400 Bad request response. The value
of the accessToken parameter is a Hash-based Message Authentication Code (HMAC). The code is a SHA-256
hash of the URI itself using the private key of the user as the secret key. It is very important that the URI is not
URL-encoded when generating the hash. Below is an example on how to generate a valid access token for a specific
image using PHP:

1 <?php
2 $user = "<user>"; // The user id
3 $publicKey = "<public key>"; // The public key of the user
4 $privateKey = "<secret value>"; // The private key of the user
5 $image = "<image>"; // The image identifier

(continues on next page)

2.1. Imbo’s API 67

http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/SHA-2

Imbo, Release 2.2.3

(continued from previous page)

6

7 // Image transformations
8 $query = [
9 "t[]=thumbnail:width=40,height=40,fit=outbound",

10 "t[]=border:width=3,height=3,color=000",
11 "t[]=canvas:width=100,height=100,mode=center"
12];
13

14 // Add a query parameter for public key if it differs from the user
15 if ($user != $publicKey) {
16 $query[] = 'publicKey=' . $publicKey;
17 }
18

19 // The URI
20 $uri = sprintf("http://imbo/users/%s/images/%s?%s", $user, $image, implode('&',

→˓$query));
21

22 // Generate the token
23 $accessToken = hash_hmac("sha256", $uri, $privateKey);
24

25 // Output the URI with the access token
26 echo sprintf("%s&accessToken=%s", $uri, $accessToken) . PHP_EOL;

and Python:

1 from hashlib import sha256
2 import hmac
3

4 user = "<user>" # The user id
5 publicKey = "<public key>" # The public key of the user
6 privateKey = "<secret value>" # The private key of the user
7 image = "<image>" # The image identifier
8

9 # Image transformations
10 query = [
11 "t[]=thumbnail:width=40,height=40,fit=outbound",
12 "t[]=border:width=3,height=3,color=000",
13 "t[]=canvas:width=100,height=100,mode=center"
14]
15

16 # Specify public key if it differs from user
17 if user != publicKey:
18 query.append('publicKey=%s' % (publicKey))
19

20 # The URI
21 uri = "http://imbo/users/%s/images/%s?%s" % (user, image, "&".join(query))
22

23 # Generate the token
24 accessToken = hmac.new(privateKey, uri, sha256)
25

26 # Output the URI with the access token
27 print "%s&accessToken=%s" % (uri, accessToken.hexdigest())

and Ruby:

1 require "digest"
2

(continues on next page)

68 Chapter 2. End user guide

Imbo, Release 2.2.3

(continued from previous page)

3 user = "<user>" # User id
4 publicKey = "<public key>" # The public key of the user
5 privateKey = "<secret value>" # The private key of the user
6 image = "<image>" # The image identifier
7

8 # Image transformations
9 queryParts = [

10 "t[]=thumbnail:width=40,height=40,fit=outbound",
11 "t[]=border:width=3,height=3,color=000",
12 "t[]=canvas:width=100,height=100,mode=center"
13]
14

15 # Specify public key if it differs from user
16 if user != publicKey
17 queryParts.push("publicKey=#{publicKey}")
18 end
19

20 # Join the query parts
21 query = queryParts.join("&")
22

23 # The URI
24 uri = "http://imbo/users/#{user}/images/#{image}?#{query}"
25

26 # Generate the token
27 accessToken = Digest::HMAC.hexdigest(uri, privateKey, Digest::SHA256)
28

29 # Output the URI with the access token
30 puts "#{uri}&accessToken=#{accessToken}"

If the event listener enforcing the access token check is removed, Imbo will ignore the accessToken query param-
eter completely. If you wish to implement your own form of access token you can do this by implementing an event
listener of your own (see Writing an event listener for more information).

Prior to Imbo-1.0.0 there was no rule that the URL had to be completely URL-decoded prior to generating the access
token in the clients. Because of this Imbo will also try to re-generate the access token server side by using the URL
as-is. This feature has been added to ease the transition to Imbo >= 1.0.0, and will be removed some time in the future.

2.1.3 Signing write requests

To be able to write to Imbo the user agent will have to specify two request headers:
X-Imbo-Authenticate-Signature and X-Imbo-Authenticate-Timestamp.

X-Imbo-Authenticate-Signature is, like the access token, an HMAC (also using SHA-256 and the private
key of the user).

The data for the hash is generated using the following elements:

• HTTP method (PUT, POST or DELETE)

• The URI

• Public key

• GMT timestamp (YYYY-MM-DDTHH:MM:SSZ, for instance: 2011-02-01T14:33:03Z)

These elements are concatenated in the above order with | as a delimiter character, and a hash is generated using the
private key of the user. The following snippet shows how this can be accomplished in PHP when deleting an image:

2.1. Imbo’s API 69

Imbo, Release 2.2.3

1 <?php
2 $user = "<user>"; // User id
3 $publicKey = "<public key>"; // The public key of the user
4 $privateKey = "<secret value>"; // The private key of the user
5 $timestamp = gmdate("Y-m-d\TH:i:s\Z"); // Current timestamp (UTC)
6 $image = "<image>"; // The image identifier
7 $method = "DELETE"; // HTTP method to use
8

9 // The URI
10 $uri = sprintf("http://imbo/users/%s/images/%s", $user, $image);
11

12 // Data for the hash
13 $data = implode("|", [$method, $uri, $publicKey, $timestamp]);
14

15 // Generate the token
16 $signature = hash_hmac("sha256", $data, $privateKey);
17

18 // Request the URI
19 $response = file_get_contents($uri, false, stream_context_create([
20 "http" => [
21 "method" => $method,
22 "header" => [
23 "X-Imbo-PublicKey " . $publicKey,
24 "X-Imbo-Authenticate-Signature: " . $signature,
25 "X-Imbo-Authenticate-Timestamp: " . $timestamp,
26],
27],
28]));

and Python (using the Requests library):

1 import hmac, requests
2 from hashlib import sha256
3 from datetime import datetime
4

5 user = "<user>" # The user ID
6 publicKey = "<public key>" # The public key of the

→˓user
7 privateKey = "<secret value>" # The private key of

→˓the user
8 timestamp = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ") # Current timestamp

→˓(UTC)
9 image = "<image>" # The image identifier

10 method = "DELETE" # HTTP method to use
11

12 # The URI
13 uri = "http://imbo/users/%s/images/%s" % (user, image)
14

15 # Data for the hash
16 data = "|".join([method, uri, publicKey, timestamp])
17

18 # Generate the token
19 signature = hmac.new(privateKey, data, sha256).hexdigest()
20

21 # Request the URI
22 response = requests.delete(uri, headers = {
23 "X-Imbo-PublicKey": publicKey,

(continues on next page)

70 Chapter 2. End user guide

http://docs.python-requests.org

Imbo, Release 2.2.3

(continued from previous page)

24 "X-Imbo-Authenticate-Signature": signature,
25 "X-Imbo-Authenticate-Timestamp": timestamp
26 })

and Ruby (using the httpclient gem):

1 require "digest"
2 require "httpclient"
3

4 user = "<user>" # The user ID
5 publicKey = "<public key>" # The public key of the user
6 privateKey = "<secret value>" # The private key of the user
7 timestamp = Time.now.utc.strftime("%Y-%m-%dT%H:%M:%SZ") # Current timestamp (UTC)
8 image = "<image>" # The image identifier
9 method = "DELETE" # HTTP method to use

10

11 # The URI
12 uri = "http://imbo/users/#{user}/images/#{image}"
13

14 # Data for the hash
15 data = [method, uri, publicKey, timestamp].join("|")
16

17 # Generate the token
18 signature = Digest::HMAC.hexdigest(data, privateKey, Digest::SHA256)
19

20 # Request the URI
21 client = HTTPClient.new
22 response = client.delete(uri, {}, {
23 "X-Imbo-PublicKey" => publicKey,
24 "X-Imbo-Authenticate-Signature" => signature,
25 "X-Imbo-Authenticate-Timestamp" => timestamp
26 })

Imbo requires that X-Imbo-Authenticate-Timestamp is within ± 120 seconds of the current time on the
server.

As with the access token the signature check is enforced by an event listener that can also be disabled. If you disable
this event listener you effectively open up for writing from anybody, which you probably don’t want to do.

If you want to implement your own authentication paradigm you can do this by creating a custom event listener.

2.1.4 Supported content types

Imbo currently responds with images (jpg, gif and png), JSON and XML, but only accepts images (jpg, gif and png)
and JSON as input.

Imbo will do content negotiation using the Accept header found in the request, unless you specify a file extension, in
which case Imbo will deliver the type requested without looking at the Accept header.

The default content type for non-image responses is JSON. Examples in this chapter uses the .json extension.
Change it to .xml to get the XML representation instead. You can also skip the extension and force a specific content
type using the Accept header:

curl http://imbo/status.json

and

2.1. Imbo’s API 71

https://rubygems.org/gems/httpclient
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/XML
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Imbo, Release 2.2.3

curl -H "Accept: application/json" http://imbo/status

will end up with the same content type. Use application/xml for XML.

If you use JSON you can wrap the content in a function (JSONP) by using one of the following query parameters:

• callback

• jsonp

• json

curl http://imbo/status.json?callback=func

will result in:

func(
{
"date": "Mon, 05 Nov 2012 19:18:40 GMT",
"database": true,
"storage": true

}
)

For images the default mime-type is the original mime-type of the image. If you add an image/gif image and fetch
that image with Accept: */* or Accept: image/* the mime-type of the image returned will be image/
gif. To choose a different mime type either change the Accept header, or use .jpg or .png (for image/jpeg
and image/png respectively).

An exception to this is if the configuration option contentNegotiateImages is set to false, in which case Imbo will
not convert the image to a different format than the original, unless explicitly told to do so by specifying an extension
(.jpg, .png, .gif etc).

2.1.5 Cache headers

Most responses from Imbo includes a set of cache-related headers that enables shared caches and user agents to cache
content.

Cache-Control

Some responses from Imbo are not cache-able. These will typically include Cache-Control: max-age=0,
no-store, private. The following resources are not cache-able:

• Index resource - /

• Stats resource - /stats

• Status resource - /status

All other resources will include Cache-Control: public. The image and short url resources will also set a
max-age, resulting in the following header: Cache-Control: max-age=31536000, public.

ETag

Imbo provides entity tags for cache validation mechanisms. User agents can use the ETag response header to do
conditional requests further down the road (by specifying the original ETag value in the If-None-Match request
header). This results in saved bandwidth as web caches and Imbo servers no longer need to send the response body, as

72 Chapter 2. End user guide

http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/HTTP_ETag

Imbo, Release 2.2.3

the one cached by the user agent can be re-used. This is achieved by sending 304 Not Modified back to the user
agent, instead of 200 OK.

The following resources in Imbo will include an ETag:

• User resource - /users/<user>

• Images resource - /users/<user>/images

• Image resource - /users/<user>/images/<image>

• Metadata resource - /users/<user>/images/<image>/metadata

• Global short URL resource - /s/<id>

The value of the ETag header is simply the MD5 sum of the content in the response body, enclosed in quotes. For
instance ETag: "fd2fd87a2f5288be31c289e70e916123".

Last-Modified

Imbo also includes a Last-Modified response header for resources that has a know last modification date, and
these resources are:

• User resource - /users/<user>: The date of when the user last added or deleted an image, or manipulated the
metadata of an image. If the user don’t have any images yet, the value of this date will be the current timestamp.

• Images resource - /users/<user>/images: The date of when the user last modified an image in the collection
(either the image itself, or metadata attached to the image).

• Image resource - /users/<user>/images/<image>: The date of when the image was added (or replaced), or
when the metadata of the image was last modified.

• Metadata resource - /users/<user>/images/<image>/metadata: The date of when the metadata of the image
was last modified.

• Global short URL resource - /s/<id>: Same as the date of the original image.

User agents can use the value of the Last-Modified header in the If-Modified-Since request header to make
a conditional request. The value of the Last-Modified header is an HTTP-date, for instance Last-Modified:
Wed, 12 Feb 2014 09:46:02 GMT.

2.1.6 Errors

When an error occurs Imbo will respond with a fitting HTTP response code along with a JSON object explaining what
went wrong.

curl -g "http://imbo/users/<user>/foobar"

results in:

{
"error": {
"imboErrorCode": 0,
"date": "Wed, 12 Dec 2012 21:15:01 GMT",
"message": "Not Found",
"code": 404

}
}

2.1. Imbo’s API 73

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1

Imbo, Release 2.2.3

The code is the HTTP response code, message is a human readable error message, date is when the error occurred
on the server, and imboErrorCode is an internal error code that can be used by the user agent to distinguish between
similar errors (such as 400 Bad request).

The JSON object will also include imageIdentifier if the request was made against the image or the metadata
resource.

2.2 Transforming images on the fly

What you as an end-user of an Imbo installation will be doing most of the time, is working with images. This is what
Imbo was originally made for, and this chapter includes details about all the different image transformations Imbo
supports.

All image transformations can be triggered by specifying the t query parameter. This parameter must be used as an
array so that you can provide several image transformations. The transformations will be applied to the image in the
same order as they appear in the URL. Each element in this array represents a single transformation with optional
parameters, specified as a string. If the t query parameter is not an array or if any of its elements are not strings, Imbo
will respond with HTTP 400.

Below you will find all image transformations supported “out of the box”, along with their parameters. Some trans-
formations are rarely used with HTTP GET, but are instead used by event listeners that transform images when they
are added to Imbo (HTTP POST). If this is the case it will be mentioned in the description of the transformation.

2.2.1 Auto rotate image based on EXIF data - t[]=autoRotate

This transformation will auto rotate the image based on EXIF data stored in the image. This transformation is rarely
used per request, but is typically used by the Auto rotate image event listener when adding images to Imbo.

Examples:

• t[]=autoRotate

2.2.2 Blur the image - t[]=blur

This transformation can be used to blur the image.

Parameters:

mode The blur type (optional). Defaults to gaussian. Possible values are:

gaussian When adding gaussian blur, the radius and sigma parameters are required.

adaptive When adding adaptive blur, the radius and sigma parameters are required. Adaptive blur
decrease the blur in the part of the picture near to the edge of the image canvas.

motion When adding motion blur, the radius, sigma and angle parameters are required.

radial When adding radial blur, the angle parameter is required.

radius The radius of the Gaussian, in pixels, not counting the center pixel.

sigma The standard deviation of the Gaussian, in pixels.

angle The number of degrees to rotate the image.

Examples:

• t[]=blur:radius=1,sigma=2

74 Chapter 2. End user guide

Imbo, Release 2.2.3

• t[]=blur:type=adaptive,radius=2,sigma=4

2.2.3 Add an image border - t[]=border

This transformation will apply a border around the image.

Parameters:

color Color of the border in hexadecimal. Defaults to 000000 (You can also specify short values like f00
(ff0000)).

width Width of the border in pixels on the left and right sides of the image. Defaults to 1.

height Height of the border in pixels on the top and bottom sides of the image. Defaults to 1.

mode Mode of the border. Can be inline or outbound. Defaults to outbound. Outbound places the border
outside of the image, increasing the dimensions of the image. inline paints the border inside of the image,
retaining the original width and height of the image.

Examples:

• t[]=border

• t[]=border:mode=inline

• t[]=border:color=000

• t[]=border:color=f00,width=2,height=2

2.2.4 Expand the image canvas - t[]=canvas

This transformation can be used to change the canvas of the original image.

Parameters:

width Width of the surrounding canvas in pixels. If omitted the width of <image> will be used.

height Height of the surrounding canvas in pixels. If omitted the height of <image> will be used.

mode The placement mode of the original image. free, center, center-x and center-y are available values.
Defaults to free.

x X coordinate of the placement of the upper left corner of the existing image. Only used for modes: free and
center-y.

y Y coordinate of the placement of the upper left corner of the existing image. Only used for modes: free and
center-x.

bg Background color of the canvas. Defaults to ffffff (also supports short values like f00 (ff0000)).

Examples:

• t[]=canvas:width=200,mode=center

• t[]=canvas:width=200,height=200,x=10,y=10,bg=000

• t[]=canvas:width=200,height=200,x=10,mode=center-y

• t[]=canvas:width=200,height=200,y=10,mode=center-x

2.2. Transforming images on the fly 75

Imbo, Release 2.2.3

2.2.5 Compress the image - t[]=compress

This transformation compresses images on the fly resulting in a smaller payload. It is advisable to only use this
transformation in combination with an image type in the URL (for instance .jpg or .png). This transformation is
not applied to images of type image/gif.

Parameters:

level The level of the compression applied to the image. The effect this parameter has on the image depends on the
type of the image. If the image in the response is an image/jpeg a high level means high quality, usually
resulting in larger files. If the image in the response is an image/png a high level means high compression,
usually resulting in smaller files. If you do not specify an image type in the URL the result of this transformation
is not deterministic as clients have different preferences with regards to the type of images they want to receive
(via the Accept request header).

Examples:

• t[]=compress:level=40

2.2.6 Change image contrast - t[]=contrast

This transformation can be used to change the contrast of the colors in the image.

Parameters:

alpha Used to adjust the intensity differences between the lighter and darker elements of the image. Can also be
negative. Note: this parameter was named sharpen in Imbo 1.x.

beta Where the midpoint of the gradient will be. This value should be in the range 0 to 1. Default: 0.5.

Examples:

• t[]=contrast:alpha=3

Note: If you are getting different results than expected when using negative alpha values, your imagick extension
is probably built against an old version of ImageMagick.

2.2.7 Convert the image type - .jpg/.gif/.png

This transformation can be used to change the image type. It is not applied like the other transformations, but is
triggered when specifying a custom extension to the <image>. Currently Imbo can convert to:

• image/jpeg

• image/png

• image/gif

Examples:

• curl http://imbo/users/<user>/images/<image>.gif

• curl http://imbo/users/<user>/images/<image>.jpg

• curl http://imbo/users/<user>/images/<image>.png

76 Chapter 2. End user guide

Imbo, Release 2.2.3

2.2.8 Crop the image - t[]=crop

This transformation is used to crop the image.

Parameters:

x The X coordinate of the cropped region’s top left corner.

y The Y coordinate of the cropped region’s top left corner.

width The width of the crop in pixels.

height The height of the crop in pixels.

mode The crop mode (optional). Possible values are:

center When using the center mode the x and y parameters are ignored, and the center of the cropped area
is placed in the center of the original image.

center-x Center the crop on the x-axis. Use the y parameter to control the upper edge of the crop.

center-y Center the crop on the y-axis. Use the x parameter to control the left edge of the crop.

Examples:

• t[]=crop:x=10,y=25,width=250,height=150

• t[]=crop:width=100,height=100,mode=center

• t[]=crop:width=50,height=50,mode=center-x,y=15

• t[]=crop:width=50,height=50,mode=center-y,x=15

2.2.9 Make a gray scaled image - t[]=desaturate

This transformation desaturates the image (in practice, gray scales it).

Examples:

• t[]=desaturate

2.2.10 Draw points of interest - t[]=drawPois

This transformation will draw an outline around all the POIs (points of interest) stored in the metadata for the image.
The format of the metadata is documented under the smartSize transformation.

Parameters:

color Color of the border in hexadecimal format. Defaults to ff0000 (You can also specify short values like f0f
(ff00ff)).

borderSize Width of the border in pixels. Defaults to 2.

pointSize The diameter (in pixels) of the circle drawn around points of interest that do not have a height and width
specified. Defaults to 30.

Examples:

• t[]=drawPois

• t[]=drawPois:borderSize=10

• t[]=drawPois:color=0f0

• t[]=drawPois:color=00f,borderSize=10,pointSize=100

2.2. Transforming images on the fly 77

Imbo, Release 2.2.3

Note: This transformation has a bug/limitation: all coordinates are based on the original image. In other words,
applying this at the end of a transformation chain which resizes/crops/rotates the image can lead to unexpected results.
This will hopefully change in the future.

2.2.11 Make a mirror image - t[]=flipHorizontally

This transformation flips the image horizontally.

Examples:

• t[]=flipHorizontally

2.2.12 Flip the image upside down - t[]=flipVertically

This transformation flips the image vertically.

Examples:

• t[]=flipVertically

2.2.13 Generate a histogram of the image - t[]=histogram

This transformation will convert the image into a histogram of the image itself, with a size of 256x158 pixels. The
size of the generated image can be overridden by using one or more of the supported parameters.

Parameters:

scale The amount to scale the histogram. Defaults to 1.

ratio The ratio to use when calculating the height of the image. Defaults to 1.618.

red The color to use when drawing the graph for the red channel. Defaults to #D93333.

green The color to use when drawing the graph for the green channel. Defaults to #58C458.

blue The color to use when drawing the graph for the blue channel. Defaults to #3767BF.

Examples:

• t[]=histogram

• t[]=histogram:scale=2

• t[]=histogram:red=f00,green=0f0,blue=00f

2.2.14 Adjust levels of the image - t[]=level

This transformation will adjust the levels of an image. You are able to specify individual channels to adjust - by default
it will apply to all channels.

Parameters:

channel The channel to adjust. r (red), g (green), b (blue), c (cyan), m (magenta), y (yellow), k (black) and
all (all channels) are available values. These channels can also be combined, if multiple channels should be
adjusted. Defaults to all.

amount The amount to adjust by. Range is from -100 to 100. Defaults to 1.

78 Chapter 2. End user guide

Imbo, Release 2.2.3

Examples:

• t[]=level

• t[]=level:channel=r,amount=30

• t[]=level:channel=rg,amount=-45

2.2.15 Enforce a max size of an image - t[]=maxSize

This transformation will resize the image using the original aspect ratio. Two parameters are supported and at least
one of them must be supplied to apply the transformation.

Note the difference from the resize transformation: given both width and height, the resulting image will not be
the same width and height as specified unless the aspect ratio is the same.

Parameters:

width The max width of the resulting image in pixels. If not specified the width will be calculated using the same
aspect ratio as the original image.

height The max height of the resulting image in pixels. If not specified the height will be calculated using the same
aspect ratio as the original image.

Examples:

• t[]=maxSize:width=100

• t[]=maxSize:height=100

• t[]=maxSize:width=100,height=50

2.2.16 Modulate the image - t[]=modulate

This transformation can be used to control the brightness, saturation and hue of the image.

Parameters:

b Brightness of the image in percent. Defaults to 100.

s Saturation of the image in percent. Defaults to 100.

h Hue percentage. Defaults to 100.

Examples:

• t[]=modulate:b=150

• t[]=modulate:b=120,s=130,h=90

2.2.17 Make a progressive image - t[]=progressive

This transformation makes the image progressive.

Examples:

• t[]=progressive

2.2. Transforming images on the fly 79

Imbo, Release 2.2.3

2.2.18 Resize the image - t[]=resize

This transformation will resize the image. Two parameters are supported and at least one of them must be supplied to
apply the transformation.

Parameters:

width The width of the resulting image in pixels. If not specified the width will be calculated using the same aspect
ratio as the original image.

height The height of the resulting image in pixels. If not specified the height will be calculated using the same
aspect ratio as the original image.

Examples:

• t[]=resize:width=100

• t[]=resize:height=100

• t[]=resize:width=100,height=50

2.2.19 Rotate the image - t[]=rotate

This transformation will rotate the image clock-wise.

Parameters:

angle The number of degrees to rotate the image (clock-wise).

bg Background color in hexadecimal. Defaults to 000000 (also supports short values like f00 (ff0000)).

Examples:

• t[]=rotate:angle=90

• t[]=rotate:angle=45,bg=fff

2.2.20 Apply a sepia color tone - t[]=sepia

This transformation will apply a sepia color tone transformation to the image.

Parameters:

threshold Threshold ranges from 0 to QuantumRange and is a measure of the extent of the sepia toning. Defaults
to 80

Examples:

• t[]=sepia

• t[]=sepia:threshold=70

2.2.21 Sharpen the image - t[]=sharpen

This transformation can be used to change the sharpness in the image.

Parameters:

radius The radius of the Gaussian operator in pixels. Defaults to 2.

sigma The standard deviation of the Gaussian, in pixels. Defaults to 1.

80 Chapter 2. End user guide

Imbo, Release 2.2.3

gain The percentage of the difference between the original and the blur image that is added back into the original.
Defaults to 1.

threshold The threshold in pixels needed to apply the difference gain. Defaults to 0.05.

preset Different presets that can be used. The presets are:

• light (radius = 2, sigma = 1, gain = 1, threshold = 0.05)

• moderate (radius = 2, sigma = 1, gain = 2, threshold = 0.05)

• strong (radius = 2, sigma = 1, gain = 3, threshold = 0.025)

• extreme (radius = 2, sigma = 1, gain = 4, threshold = 0)

When using any of the presets the different parameters can be overridden by specifying radius, sigma, gain
and/or threshold. Not specifying any parameters at all is the same as using the light preset.

Examples:

• t[]=sharpen

• t[]=sharpen:preset=light (same as above)

• t[]=sharpen:preset=extreme,gain=10 (use the extreme preset, but use a gain value of 10 instead
of 4)

• t[]=sharpen:radius=2,sigma=1,gain=1,threshold= 0.05 (same as using
t[]=sharpen:preset=light, or simply t[]=sharpen)

2.2.22 Smart size the image - t[]=smartSize

This transformation is used to crop the image based on a point of interest (POI) provided either as a transformation
parameter or from the image metadata.

Metadata format

The smart size transformation supports reading the POI from the metadata of the image. The POI information is
expected to be stored on the poi property in metadata. Below is an example of a valid metadata object containing a
600,240 POI:

{
"poi": [
{

x: 600,
y: 240

}
]

}

Note: The smart size transformation currently takes only the first object into account when cropping the image, but
the POIs is stored as an array of objects in order to be easy to expand with more information for a more sophisticated
smart size algorithm in the future.

Parameters:

width The width of the crop in pixels.

height The height of the crop in pixels.

poi The POI coordinate x,y to crop around. The parameter is optional if the POI exists in metadata.

2.2. Transforming images on the fly 81

Imbo, Release 2.2.3

crop The closeness of the crop (optional). Possible values are:

close medium wide

Examples:

• t[]=smartSize:width=250,height=250,poi=300,200

• t[]=smartSize:width=250,height=250,poi=300,200,crop=close

2.2.23 Strip image properties and comments - t[]=strip

This transformation removes all properties and comments from the image. If you want to strip EXIF tags from the
image for instance, this transformation will do that for you.

Examples:

• t[]=strip

2.2.24 Create a thumbnail of the image - t[]=thumbnail

This transformation creates a thumbnail of <image>.

Parameters:

width Width of the thumbnail in pixels. Defaults to 50.

height Height of the thumbnail in pixels. Defaults to 50.

fit Fit style. Possible values are: inset or outbound. Default to outbound.

Examples:

• t[]=thumbnail

• t[]=thumbnail:width=20,height=20,fit=inset

2.2.25 Create a vertical mirror image - t[]=transpose

This transformation transposes the image.

Examples:

• t[]=transpose

2.2.26 Create a horizontal mirror image - t[]=transverse

This transformation transverses the image.

Examples:

• t[]=transverse

82 Chapter 2. End user guide

Imbo, Release 2.2.3

2.2.27 Add a vignette to the image - t[]=vignette

This transformation can be used to add a vignette to the image.

Parameters:

inner Color at the center of the image, in hexadecimal. Defaults to none, which means transparent. (You can also
specify short values like f00 (ff0000)).

outer Color at the edge of the image, in hexadecimal. Defaults to 000.

scale Scale factor of the vignette. 2 will create a vignette twice the size of the original image. Defaults to 1.5.

Examples:

• t[]=vignette

• t[]=vignette:outer=ccc

• t[]=vignette:scale=1,outer=333

2.2.28 Add a watermark to the image - t[]=watermark

This transformation can be used to apply a watermark on top of the original image.

Parameters:

img Image identifier of the image to apply as watermark. Can be set to a default value in configuration by using
<setDefaultImage>.

width Width of the watermark image in pixels. If omitted the width of will be used.

height Height of the watermark image in pixels. If omitted the height of will be used.

position The placement of the watermark image. top-left, top-right, bottom-left, bottom-right
and center are available values. Defaults to top-left.

x Number of pixels in the X-axis the watermark image should be offset from the original position (defined by the
position parameter). Supports negative numbers. Defaults to 0

y Number of pixels in the Y-axis the watermark image should be offset from the original position (defined by the
position parameter). Supports negative numbers. Defaults to 0

opacity Can be an integer between 0 and 100 where 0 is fully transparent, and 100 is fully opaque. Defaults to
100

Examples:

• t[]=watermark:img=f5f7851c40e2b76a01af9482f67bbf3f

• t[]=watermark:img=f5f7851c40e2b76a01af9482f67bbf3f,width=200,x=5

• t[]=watermark:img=f5f7851c40e2b76a01af9482f67bbf3f,height=50,x=-5,y=-5,
position=bottom-right,opacity=50

If you want to set the default watermark image you will have to do so in the configuration:

<?php
return [

// ...

'eventListeners' => [
'watermark' => function() {

(continues on next page)

2.2. Transforming images on the fly 83

Imbo, Release 2.2.3

(continued from previous page)

$transformation = new Imbo\Image\Transformation\Watermark();
$transformation->setDefaultImage('some image identifier');

return $transformation;
},

],

// ...
];

When you have specified a default watermark image you are not required to use the img option for the transformation,
but if you do so it will override the default one.

84 Chapter 2. End user guide

CHAPTER 3

Extending/customizing Imbo

3.1 Working with events and event listeners

Imbo uses an event dispatcher to trigger certain events from inside the application that you can subscribe to by using
event listeners. In this chapter you can find information regarding the events that are triggered, and how to be able to
write your own event listeners for Imbo.

3.1.1 Events

When implementing an event listener you need to know about the events that Imbo triggers. The most important
events are combinations of the accessed resource along with the HTTP method used. Imbo currently provides these
resources:

• index

• stats

• status

• user

• images

• image

• globalshorturl

• metadata

Examples of events that are triggered:

• image.get

• images.post

• image.delete

• metadata.get

85

Imbo, Release 2.2.3

• status.head

• stats.get

As you can see from the above examples the events are built up by the resource name and the HTTP method, lower-
cased and separated by ..

Some other notable events:

• storage.image.insert

• storage.image.load

• storage.image.delete

• db.image.insert

• db.image.load

• db.image.delete

• db.metadata.update

• db.metadata.load

• db.metadata.delete

• response.send

Image transformations also use the event dispatcher when triggering events. The events triggered for this is pre-
fixed with image.transformation. and ends with the transformation as specified in the URL, lowercased. If
you specify t[]=thumbnail&t[]=flipHorizontally as a query parameter when requesting an image the
following events will be triggered:

• image.transformation.thumbnail

• image.transformation.fliphorizontally

All image transformation events adds the image and parameters for the transformation as arguments to the event,
which can be fetched by the transformation via the $event object passed to the methods which subscribe to the
transformation events.

3.1.2 Writing an event listener

When writing an event listener for Imbo you can choose one of the following approaches:

1. Implement the Imbo\EventListener\ListenerInterface interface that comes with Imbo

2. Implement a callable piece of code, for instance a class with an __invoke method

3. Use a Closure

Below you will find examples on the approaches mentioned above.

Note: Information regarding how to attach the event listeners to Imbo is available in the event listener configuration
section.

Implement the Imbo\EventListener\ListenerInterface interface

Below is the complete interface with comments:

86 Chapter 3. Extending/customizing Imbo

http://www.php.net/closure

Imbo, Release 2.2.3

1 <?php
2 /**
3 * This file is part of the Imbo package
4 *
5 * (c) Christer Edvartsen <cogo@starzinger.net>
6 *
7 * For the full copyright and license information, please view the LICENSE file that

→˓was
8 * distributed with this source code.
9 */

10

11 namespace Imbo\EventListener;
12

13 /**
14 * Event listener interface
15 *
16 * @author Christer Edvartsen <cogo@starzinger.net>
17 * @package Event\Listeners
18 */
19 interface ListenerInterface {
20 /**
21 * Return an array with events to subscribe to
22 *
23 * Single callbacks can use the simplest method, defaulting to a priority of 0
24 *
25 * return [
26 * 'event' => 'someMethod',
27 * 'event2' => 'someOtherMethod',
28 *];
29 *
30 * If you want to specify multiple callbacks and/or a priority for the

→˓callback(s):
31 *
32 * return [
33 * 'event' => [
34 * 'someMethod', // Defaults to priority 0, same as 'someMethod' => 0
35 * 'someOtherMethod' => 10, // Will trigger before "someMethod"
36 * 'someThirdMethod' => -10, // Will trigger after "someMethod"
37 *],
38 * 'event2' => 'someOtherMethod',
39 *];
40 *
41 * @return array
42 */
43 static function getSubscribedEvents();
44 }

The only method you need to implement is called getSubscribedEvents and that method should return an array
where the keys are event names, and the values are callbacks. You can have several callbacks to the same event, and
they can all have specific priorities.

Below is an example of how the Authenticate event listener implements the getSubscribedEvents method:

<?php

// ...

(continues on next page)

3.1. Working with events and event listeners 87

Imbo, Release 2.2.3

(continued from previous page)

public static function getSubscribedEvents() {
$callbacks = [];
$events = [

'images.post',
'image.delete',
'metadata.put',
'metadata.post',
'metadata.delete'

];

foreach ($events as $event) {
$callbacks[$event] = ['authenticate' => 100];

}

return $callbacks;
}

public function authenticate(Imbo\EventManager\EventInterface $event) {
// Code that handles all events this listener subscribes to

}

// ...

In the snippet above the same method (authenticate) is attached to several events. The priority used is 100, which
means it’s triggered early in the application flow.

The authenticate method, when executed, receives an instance of the event object that it can work with. The
fact that the above code only uses a single callback for all events is an implementation detail. You can use different
callbacks for all events if you want to.

Use a class with an __invoke method

You can also keep the listener definition code out of the event listener entirely, and specify that piece of information
in the Imbo configuration instead. An invokable class could for instance look like this:

<?php
class SomeEventListener {

public function __invoke(Imbo\EventManager\EventInterface $event) {
// some custom code

}
}

where the $event object is the same as the one passed to the authenticate method in the previous example.

Use a Closure

For testing and/or debugging purposes you can also write the event listener directly in the configuration, by using a
Closure:

<?php
return [

// ...

'eventListeners' => [

(continues on next page)

88 Chapter 3. Extending/customizing Imbo

http://www.php.net/closure

Imbo, Release 2.2.3

(continued from previous page)

'customListener' => [
'callback' => function(Imbo\EventManager\EventInterface $event) {

// Custom code
},
'events' => ['image.get'],

],
],

// ...
];

The $event object passed to the function is the same as in the previous two examples. This approach should mostly
be used for testing purposes and quick hacks. More information regarding this approach is available in the event
listener configuration section.

Subscribing to events using a wild card

When subscribing to one or more events Imbo let’s you use wild cards. This means that you can have your event
listener subscribe to all the different image events by specifying 'image.*' as the event you are subscribing to. If
you want a listener to subscribe to all events you can simply use '*'. Use $event->getName() in your handler
to figure out which event is actually being triggered.

One other thing to keep in mind while using wild card events is priorities. Global wild card event listeners (that listens
to '*') is triggered before all other listeners, and other wild card listeners are triggered before the ones who has
absolute event names they are subscribing to.

Example:

<?php
return [

// ...

'eventListeners' => [
'listener1' => [

'callback' => function ($e) { /* ... */ },
'events' => ['*'],
'priority' => 100,

],
'listener2' => [

'callback' => function ($e) { /* ... */ },
'events' => ['*'],
'priority' => 200,

],
'listener3' => [

'callback' => function ($e) { /* ... */ },
'events' => ['image.*'],
'priority' => 300,

],
'listener4' => [

'callback' => function ($e) { /* ... */ },
'events' => ['image.*'],
'priority' => 400,

],
'listener5' => [

'callback' => function ($e) { /* ... */ },
'events' => ['image.get'],

(continues on next page)

3.1. Working with events and event listeners 89

Imbo, Release 2.2.3

(continued from previous page)

'priority' => PHP_INT_MAX,
],

],

// ...
];

Given the configuration above the execution order would be:

• listener2

• listener1

• listener4

• listener3

• listener5

Even though listener5 has the highest possible priority the wild card listeners are executed first, because they are
in their own priority queues.

3.1.3 The event object

The object passed to the event listeners is an instance of the Imbo\EventManager\EventInterface interface.
This interface has some methods that event listeners can use:

getName() Get the name of the current event. For instance image.delete.

getHandler() Get the name of the current event handler, as specified in the configuration. Can come in handy
when you have to dynamically register more callbacks based on constructor parameters for the event listener.
Have a look at the implementation of the CORS event listener for an example on how to achieve this.

getRequest() Get the current request object (an instance of Imbo\Http\Request\Request)

getResponse() Get the current response object (an instance of Imbo\Http\Response\Response)

getDatabase() Get the current database adapter (an instance of Imbo\Database\DatabaseInterface)

getStorage() Get the current storage adapter (an instance of Imbo\Storage\StorageInterface)

getManager() Get the current event manager (an instance of Imbo\EventManager\EventManager)

getConfig() Get the complete Imbo configuration. This should be used with caution as it includes all authentica-
tion information regarding the Imbo users.

stopPropagation() If you want your event listener to force Imbo to skip all following listeners for the same
event, call this method in your listener.

isPropagationStopped() This method is used by Imbo to check if a listener wants the propagation to stop.
Your listener will most likely never need to use this method.

getArgument() This method can be used to fetch arguments given to the event. This method is used by all image
transformation event listeners as the image itself and the parameters for the transformation is stored as arguments
to the event.

With these methods you have access to most parts of Imbo. Be careful when using the database and storage adapters
as these grant you access to all data stored in Imbo, with both read and write permissions.

90 Chapter 3. Extending/customizing Imbo

Imbo, Release 2.2.3

3.2 Implement your own database and/or storage adapter

If the adapters shipped with Imbo does not fit your needs you can implement your own set of database and/or storage
adapters and have Imbo use them pretty easily. A set of interfaces exists for you to implement, and then all that’s left
to do is to enable the adapters in your configuration file. See the Database confguration and Storage configuration
sections for more information on how to enable different adapters in the configuration.

Custom database adapters must implement the Imbo\Database\DatabaseInterface interface, and custom
storage adapters must implement the Imbo\Storage\StorageInterface interface.

If you implement an adapter that you think should be a part of Imbo feel free to send a pull request on GitHub.

3.3 Implement your own image transformations

Imbo also supports custom image transformations. All you need to do is to create an event listener, and configure your
transformation:

<?php
class My\Custom\Transformation implements Imbo\EventListener\ListenerInterface {

public static function getSubscribedEvents() {
return ['image.transformation.cooltransformation' => 'transform'];

}

public function transform($event) {
$image = $event->getArgument('image');
$params = $event->getArgument('params'); // If the transformation allows

→˓params in the URL

// ...
}

}

return [
// ..

'eventListeners' => [
'coolTransformation' => 'My\Custom\Transformation',

],

// ...
];

Whenever someone requests an image using ?t[]=coolTransformation:width=100,height=200 Imbo
will trigger the image.transformation.cooltransformation event, and assign the following value to the
params argument of the event:

[
'width' => '100',
'height' => '200',

]

Take a look at the existing transformations included with Imbo for more information.

3.2. Implement your own database and/or storage adapter 91

https://github.com/imbo/imbo

Imbo, Release 2.2.3

3.4 Cache adapters

If you want to leverage caching in a custom event listener, Imbo ships with some different solutions:

3.4.1 APC

This adapter uses the APCu extension for caching. If your Imbo installation consists of a single httpd this is a good
choice. The adapter has the following parameters:

$namespace (optional) A namespace for your cached items. For instance: “imbo”

Example:

<?php
$adapter = new Imbo\Cache\APC('imbo');
$adapter->set('key', 'value');

echo $adapter->get('key'); // outputs "value"
echo apc_fetch('imbo:key'); // outputs "value"

3.4.2 Memcached

This adapter uses Memcached for caching. If you have multiple httpd instances running Imbo this adapter lets you
share the cache between all instances automatically by letting the adapter connect to the same Memcached daemon.
The adapter has the following parameters:

$memcached An instance of the pecl/memcached class.

$namespace (optional) A namespace for your cached items. For instance: “imbo”.

Example:

<?php
$memcached = new Memcached();
$memcached->addServer('hostname', 11211);

$adapter = new Imbo\Cache\Memcached($memcached, 'imbo');
$adapter->set('key', 'value');

echo $adapter->get('key'); // outputs "value"
echo $memcached->get('imbo:key'); // outputs "value"

3.4.3 Implement a custom cache adapter

If you want to use some other cache mechanism an interface exists (Imbo\Cache\CacheInterface) for you to
implement:

1 <?php
2 /**
3 * This file is part of the Imbo package
4 *
5 * (c) Christer Edvartsen <cogo@starzinger.net>
6 *
7 * For the full copyright and license information, please view the LICENSE file that

→˓was (continues on next page)

92 Chapter 3. Extending/customizing Imbo

http://pecl.php.net/apcu
http://pecl.php.net/memcached

Imbo, Release 2.2.3

(continued from previous page)

8 * distributed with this source code.
9 */

10

11 namespace Imbo\Cache;
12

13 /**
14 * Cache adapter interface
15 *
16 * An interface for cache adapters.
17 *
18 * @author Christer Edvartsen <cogo@starzinger.net>
19 * @package Cache
20 */
21 interface CacheInterface {
22 /**
23 * Get a cached value by a key
24 *
25 * @param string $key The key to get
26 * @return mixed Returns the cached value or null if key does not exist
27 */
28 function get($key);
29

30 /**
31 * Store a value in the cache
32 *
33 * @param string $key The key to associate with the item
34 * @param mixed $value The value to store
35 * @param int $expire Number of seconds to keep the item in the cache
36 * @return boolean True on success, false otherwise
37 */
38 function set($key, $value, $expire = 0);
39

40 /**
41 * Delete an item from the cache
42 *
43 * @param string $key The key to remove
44 * @return boolean True on success, false otherwise
45 */
46 function delete($key);
47

48 /**
49 * Increment a value
50 *
51 * @param string $key The key to use
52 * @param int $amount The amount to increment with
53 * @return int|boolean Returns new value on success or false on failure
54 */
55 function increment($key, $amount = 1);
56

57 /**
58 * Decrement a value
59 *
60 * @param string $key The key to use
61 * @param int $amount The amount to decrement with
62 * @return int|boolean Returns new value on success or false on failure
63 */
64 function decrement($key, $amount = 1);

(continues on next page)

3.4. Cache adapters 93

Imbo, Release 2.2.3

(continued from previous page)

65 }

If you choose to implement this interface you can also use your custom cache adapter for all the event listeners Imbo
ships with that leverages a cache.

If you implement an adapter that you think should be a part of Imbo feel free to send a pull request on GitHub.

3.5 Contributing to Imbo

Imbo is an open source project licensed with the MIT license. All contributions should ideally be sent in form of a
pull request on GitHub. Please use features branches with descriptive names, and remember to send the pull request
against the develop branch.

If you have found a bug in Imbo, please leave an issue in the issue tracker.

3.5.1 Build script

Imbo uses Rake for building, and if you have Rake installed you can simply run the rake command after cloning
Imbo to run the complete build. You might need to install some additional tools for the whole build to complete
successfully. If you need help getting the build script to work with no errors drop by the #imbo channel on IRC
(Freenode) or simply add an issue in the issue tracker on GitHub.

Running the complete suite is not necessary for all contributions. If you skip the build script and simply want to get
Imbo up and running for contributing you can run the following commands in the directory where you cloned Imbo:

curl -s https://getcomposer.org/installer | php
php composer.phar install

Remember to not include the --no-dev argument to composer. If you include that argument the development
requirements will not be installed.

3.5.2 Requirements

When contributing to Imbo (or any of the other related packages) there are some guidelines you should follow.

Coding standard

Imbo has a coding standard that is partially defined as a PHP Code Sniffer standard. The standard is available on
GitHub and is installable via PEAR. There are some details that might not be covered by the standard, so if you send a
PR you might notice some nitpicking from my part regarding stuff not covered by the standard. Browse existing code
to understand the general look and feel.

Tests

When introducing new features you are required to add tests. Unit/integration tests (PHPUnit) and/or Behat scenarios
is sufficient. To run the PHPUnit test suite you can execute the following command in the project root directory after
installing Imbo:

./vendor/bin/phpunit -c tests/phpunit

94 Chapter 3. Extending/customizing Imbo

https://github.com/imbo/imbo
http://opensource.org/licenses/MIT
https://github.com/imbo/imbo/issues
http://rake.rubyforge.org/
http://pear.php.net/package/PHP_CodeSniffer
https://github.com/imbo/imbo-codesniffer
https://github.com/imbo/imbo-codesniffer
http://pear.php.net
https://github.com/sebastianbergmann/phpunit/
http://behat.org/

Imbo, Release 2.2.3

If you want to generate code coverage as well you can run the test suite by using a Rake task:

rake phpunit

For the Behat test suite you can run similar commands:

./vendor/bin/behat --strict --profile no-cc --config tests/behat/behat.yml

to skip code coverage, or

rake behat

for code coverage of the Behat tests. If you want to run both suites and collect code coverage you can execute:

rake test

Code coverage is located in build/coverage and build/behat-coverage respectively.

If you find a bug that you want to fix please add a test first that confirms the bug, and then fix the bug, making the
newly added test pass.

Documentation

API documentation is written using phpDocumentor, and can be generated via a Rake task:

rake apidocs

End user documentation (the ones you are reading now) is written using Sphinx and is located in the docs/ directory
in the project root. To generate the HTML version of the docs you can execute the following command:

rake readthedocs

This task also includes a spell checking stage.

Pull requests on GitHub

If you want to send a pull request, please do so from a publicly available fork of Imbo, using a feature branch with a
self descriptive name. The pull request should be sent to the develop branch. If your pull request is fixing an open
issue from the issue tracker your branch can be named after the issue number, for instance issue-312.

3.5. Contributing to Imbo 95

http://www.phpdoc.org/
http://sphinx-doc.org/
https://github.com/imbo/imbo/issues

	Installation guide
	Requirements
	Installation
	Upgrading Imbo
	Configuration
	Customize your Imbo installation with event listeners
	Command line tool

	End user guide
	Imbo’s API
	Transforming images on the fly

	Extending/customizing Imbo
	Working with events and event listeners
	Implement your own database and/or storage adapter
	Implement your own image transformations
	Cache adapters
	Contributing to Imbo

